Exploratory studies of substitutions in the tetrahedrite/tennantite-goldfieldite solid solution - DTU Orbit (04/10/2019)

Exploratory studies of substitutions in the tetrahedrite/tennantite-goldfieldite solid solution

Phases on the Fe-tetrahedrite-goldfieldite and Fe-tennantite-goldfieldite joins were synthesized from high purity elements in evacuated silica glass tubes at 450 °C and analyzed using electron microprobe analysis and X-ray powder diffraction. The synthetic studies confirm that the compositions on these joins are determined by a (formal) interplay of the Fe$^{3+}$ + Cu$^{+}$ → 2Fe$^{2+}$, Cu$^{+}$+Te$^{4+}$ → Fe$^{2+}$+(Sb,As)$^{3+}$, Cu$^{+}$+2Te$^{4+}$ → Fe$^{3+}$+2(Sb,As)$^{3+}$, and Cu$^{+}$+Te$^{4+}$ → Cu$^{2+}$+(Sb,As)$^{3+}$ substitutions, and also for the region close to Te = 2 apfu by A + Te$^{4+}$ → Cu$^{+}$ + Sb$^{3+}$. The latter exchange determines the Te-tennantite/tetrahedrite-goldfieldite join. For the region of goldfieldite just above and below 2 Te atoms pfu, the latter exchange is modified by the Fe$^{n+}$→Cu$^{+}$ exchange. The 2Fe$^{2+}$→Fe$^{3+}$+Cu$^{+}$ exchange causes an arc-like retreat of the composition field away from the linear Cu$^{+}$ + Te$^{4+}$ → Fe$^{2+}$ + (Sb,As)$^{3+}$ boundary. Incomplete elimination of Fe, compensated by early onset of Cu vacancies, results in a gradual transition between the region of tellurian td/tn and goldfieldite sensu stricto. This variety of substitution and omission mechanisms determines the proportions of alternative endmembers and intermediate members: Cu$_{10}$Fe$_{2+2}$(Sb,As)$_4$S$_{13}$, Cu$_{11}$Fe$_{3+}$(Sb,As)$_4$S$_{13}$, Cu$_{12}$(Sb,As)$_4$S$_{13}$, Cu$_{12}$Te$_2$(Sb,As)$_2$S$_{13}$, and Cu$_{10}$Te$_4$S$_{13}$, plus a measure of the Fe$^{n+}$→Cu$^{+}$ exchange. Natural goldfieldite conforms with the synthesis results in its compositional extent. The natural data are mostly not good or complete enough to examine the compositional details suggested here because the calculations described above are very sensitive to the quality of the analyses.

General information
Publication status: Published
Organisations: Department of Civil Engineering, Section for Geotechnics and Geology, University of Copenhagen
Contributors: Makovicky, E., Karup-Møller, S.
Number of pages: 12
Pages: 233-244
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Canadian Mineralogist
Volume: 55
Issue number: 2
ISSN (Print): 0008-4476
Ratings:
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.07 SJR 0.565 SNIP 0.748
Web of Science (2017): Impact factor 0.945
Web of Science (2017): Indexed yes
Original language: English
DOIs: 10.3749/canmin.1600067
Source: Findit
Source ID: 2372310432
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review