Experiments and modeling of single plastic particle conversion in suspension - DTU Orbit (07/10/2019)

Experiments and modeling of single plastic particle conversion in suspension

Conversion of single high density polyethylene (PE) particles has been studied by experiments and modeling. The experiments were carried out in a single particle combustor for five different shapes and masses of particles at temperature conditions of 900 and 1100°C. Each experiment was recorded using a camera. For selected experiments, the center and surface temperatures of the particles were measured using a thermocouple and an IR camera, respectively. During each experiment, the polyethylene particles went through melting, deformation, and decomposition. After the start of decomposition, the surface temperature became almost constant within the range of 480–550°C. The total conversion times of polyethylene particles were mainly influenced by the reactor temperature and particle mass, and the effect of particle shape was less significant. A non-isothermal 1D model was established and validated against the experiments as well as literature data. Furthermore, a simplified isothermal model appropriate for CFD applications was developed, in order to model the combustion of plastic particles in cement calciners. By comparing predictions with the isothermal and the non-isothermal models under typical calciner conditions, it is shown that the accuracy in prediction of the total conversion times of thermoplastic particles is within ±30%, for particles lighter than 1000 mg.

General information
Publication status: Published
Organisations: Department of Chemical and Biochemical Engineering, CHEC Research Centre, The Hempel Foundation Coatings Science and Technology Centre (CoaST), FLSmidth & Co. A/S
Corresponding author: Nakhaei, M.
Pages: 213-225
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Fuel Processing Technology
Volume: 178
ISSN (Print): 0378-3820
Ratings:
BFI (2018): BFI-level 2
Scopus rating (2018): CiteScore 4.72 SJR 1.415 SNIP 1.577
Web of Science (2018): Impact factor 4.507
Web of Science (2018): Indexed yes
Original language: English
DOI: 10.1016/j.fuproc.2018.05.003
Source: FindIt
Source ID: 2435126473
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review