Abstract
Surface plasmon polaritons (SPPs) in plasmonic metal waveguides can excite a third-order nonlinear response [1] much akin the well-known self-phase modulation (SPM) and two-photon absorption seen in light propagating in dielectric waveguides. In metals, the nonlinearity mainly arises as a self-acting effect: after absorption of the incident light the nonlinearity arises due to hot-electron contributions from changes of the intrinsic electronic lattice temperature. Using the so-called two-temperature model (TTM), the characteristic thermalization time of free-electrons in noble metals, such as gold, is described by an intrinsic delayed response function acting on a femtosecond-picosecond scale [1], explaining why the measured χ(3) values of gold are affected by the laser pulse duration. Here we show experimental data performed using picosecond [2] and femtosecond [3] laser pulses that for the first time allows to quantitatively connect the measured χ(3) values with the nonlinear coefficient of a nonlinear Schrödinger equation (NLSE) using the TTM to derive the nonlinearity.
Original language | English |
---|---|
Title of host publication | 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) |
Publisher | IEEE |
Publication date | 2017 |
Pages | 1 |
ISBN (Electronic) | 978-1-5090-6736-7 |
DOIs | |
Publication status | Published - 2017 |
Event | The 2017 European Conference on Lasers and Electro-Optics - Munich, Germany Duration: 25 Jun 2017 → 29 Jun 2017 http://www.cleoeurope.org/ |
Conference
Conference | The 2017 European Conference on Lasers and Electro-Optics |
---|---|
Country/Territory | Germany |
City | Munich |
Period | 25/06/2017 → 29/06/2017 |
Internet address |