Experimental studies of the formation of cluster ions formed by corona discharge in an atmosphere containing SO$_2$, NH$_3$, and H$_2$O

Abstract

We report on studies of ion-induced nucleation in a corona discharge taking place in an atmosphere containing SO$_2$, NH$_3$, and H$_2$O at standard temperature and pressure. Positive ions such as H$_3$O$^+$(H$_2$O)$_n$, NH$_4^+$(H$_2$O)$_n$, and H$^+$(H$_2$SO$_4$)(H$_2$O)$_n$ and negative ions such as HSO$_5^-$-(H$_2$O)$_n$, SO$_4^-$-(H$_2$O)$_n$, HSO$_4^-$-(H$_2$O)$_n$ and NO$_3^-$-(H$_2$O)$_n$ have been recorded. Large values of $n (>100)$ were observed and the experiment indicates the existence of even larger water clusters. In contrast, only clusters with a maximum of 2 sulfuric acid molecules were observed. Fragmentation studies also revealed that the negative ion HSO$_5^-$, which has been observed in many studies, in our experiments is contaminated by O$_2^-$-(HNO$_3$)(H$_2$O) ions, and this may also have been the case in other experiments. Finally an ion with m/z = 232 (where m is the cluster mass in amu and z is the charge state), capable of attaching H$_2$O-molecules was observed and studied by fragmentation.

General information

Publication status: Published
Organisations: National Space Institute, Solar System Physics, Sunclimate, Aarhus University, University of Helsinki
Pages: 1-6
Publication date: 2013
Peer-reviewed: Yes

Publication information

Journal: International Journal of Mass Spectrometry
Volume: 341-342
ISSN (Print): 1387-3806
Ratings:
- BFI (2013): BFI-level 1
- Scopus rating (2013): CiteScore 2.23 SJR 0.854 SNIP 0.886
- Web of Science (2013): Impact factor 2.227
- ISI indexed (2013): ISI indexed yes
- Web of Science (2013): Indexed yes
Original language: English
Keywords: Corona discharge, Cluster formation, Sulfuric acid
DOIs:
10.1016/j.ijms.2013.03.001
Source: RIS
Source ID: urn:9C8CD3FBBD945428801BFD194271C58F
Research output: Contribution to journal › Journal article – Annual report year: 2013 › Research › peer-review