Experimental observation of Dyakonov plasmons in the mid-infrared - DTU Orbit
(04/08/2019)

Experimental observation of Dyakonov plasmons in the mid-infrared
In this work, we report on observation of Dyakonov plasmons at an interface with a hyperbolic metamaterial in the mid-IR. The hyperbolic metamaterial is implemented as a CMOS-compatible high aspect ratio grating structure with aluminium-doped ZnO (AZO) ridges grown by atomic layer deposition in deep trench silicon matrix. The dispersion of Dyakonov plasmons is characterized by the attenuated total reflection method in the Otto configuration. We demonstrate that Dyakonov plasmons propagate in a broad range of directions (a few tens of degrees) in contrast to the classical Dyakonov surface waves (about one tenth of degree). The obtained results provide useful guidelines for practical implementations of structures supporting Dyakonov plasmons in the mid-IR.

General information
Publication status: Published
Organisations: Department of Photonics Engineering, Metamaterials, DTU Danchip, St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO), Ioffe Institute
Contributors: Takayama, O., Dmitriev, P., Shkondin, E., Yermakov, O., Panah, M., Golenitskii, K., Jensen, F., Bodganov, A., Lavrinenko, A.
Pages: 442–446
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Semiconductors
Volume: 52
Issue number: 4
ISSN (Print): 1063-7826
Ratings: BFI (2018): BFI-level 1
Scopus rating (2018): CiteScore 0.76 SJR 0.308 SNIP 0.777
Web of Science (2018): Impact factor 0.691
Web of Science (2018): Indexed yes
Original language: English
Electronic versions:
10.1134_2FS1063782618040279.pdf
DOIs:
10.21883/FTP.2018.04.45814.03
Source: FindIt
Source-ID: 2397549284
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review