Experimental investigation on ultimate strength and failure response of composite box beams used in wind turbine blades

This study focuses on the ultimate strength and failure response of composite box beams under three-point bending. The box beams consist of spar caps and shear webs and they are typically used in wind turbine blades as load-carrying members. Different spar cap configurations and loading directions are examined experimentally to investigate structural behavior associated with multiple nonlinearities leading to structural collapse. Global displacements, local strains and video images are recorded throughout the loading history to capture failure initiation, propagation and the strain state contributing to post-collapse characteristics. The failure mechanisms of the box beams involving geometric, material and contact nonlinearities are discussed in detail. The study shows that compressive crushing failure, driven by local buckling of shear webs, determines the ultimate strength of the box beams under flapwise loading, and adhesive joint debonding, initiated by local adhesive cracking and spar cap buckling, is the critical failure mode of the box beams under edgewise loading. The Brazier effect and shear nonlinearity contribute to the initial failure depending on the loading directions. Debonding rather than delamination characterizes post-collapse behavior of all box beams examined in this study.

General information
Publication status: Published
Organisations: Department of Wind Energy, Wind Turbine Structures and Component Design, Chinese Academy of Sciences
Corresponding author: Chen, X.
Contributors: Tang, J., Chen, X.
Pages: 19-34
Publication date: 15 Aug 2018
Peer-reviewed: Yes

Publication information
Journal: Composite Structures
Volume: 198
ISSN (Print): 0263-8223
Ratings:
BFI (2018): BFI-level 2
Scopus rating (2018): CiteScore 5.39 SJR 1.967 SNIP 2.035
Web of Science (2018): Impact factor 4.829
Web of Science (2018): Indexed yes
Keywords: Buckling, Collapse, Composite, Debonding, Delamination, Failure mode, Nonlinearity
DOIs:
10.1016/j.compstruct.2018.05.042
Source: Scopus
Source ID: 85047197021
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review