Experimental investigation of transverse mixing in porous media under helical flow conditions

Yu Ye, Gabriele Chiogna, Olaf A. Cirpka, Peter Grathwohl, Massimo Rolle

Research output: Contribution to journalJournal articleResearchpeer-review

353 Downloads (Pure)


Plume dilution and transverse mixing can be considerably enhanced by helical flow occurring in three-dimensional heterogeneous anisotropic porous media. In this study, we perform tracer experiments in a fully three-dimensional flow-through chamber to investigate the effects of helical flow on plume spiraling and deformation, as well as on its dilution. Porous media were packed in angled stripes of materials with different grain sizes to create blocks with macroscopically anisotropic hydraulic conductivity, which caused helical flows. Steady-state transport experiments were carried out by continuously injecting dye tracers at different inlet ports. High-resolution measurements of concentration and flow rates were performed at 49 outlet ports. These measurements allowed quantifying the spreading and dilution of the solute plumes at the outlet cross section. Direct evidence of plume spiraling and visual proof of helical flow was obtained by freezing and slicing the porous media at different cross sections and observing the dye-tracer distribution. We simulated flow and transport to interpret our experimental observations and investigate the effects of helical flow on mixing-controlled reactive transport. The simulation results were evaluated using metrics of reactive mixing such as the critical dilution index and the length of continuously injected steady-state plumes. The results show considerable reaction enhancement, quantified by the remarkable decrease of reactive plume lengths (up to four times) in helical flows compared to analogous scenarios in uniform flows.
Original languageEnglish
Article number013113
JournalPhysical Review E
Issue number1
Number of pages10
Publication statusPublished - 2016

Fingerprint Dive into the research topics of 'Experimental investigation of transverse mixing in porous media under helical flow conditions'. Together they form a unique fingerprint.

Cite this