Experimental Investigation of Optoelectronic receiver with Reservoir Computing in Short Reach Optical Fiber Communications

Stenio M. Ranzini, Roman Dischler, Francesco Da Ros, Henning Buelow, Darko Zibar

Research output: Contribution to journalJournal articleResearchpeer-review

215 Downloads (Pure)


The cloud edge data center will enable reliable and low latency options for the network, and the interconnection among these data-centers will demand a scalable low-complexity scheme. An intensity-modulated and directed detected transmission system is an attractive solution, but chromatic dispersion is the main limitation for higher symbol rate systems. To overcome this challenge, we have proposed and experimentally demonstrated a receiver with shared-complexity between optical and digital domains that enables 80 km transmission reach below KP4 FEC limit for a 32 GBd on-off keying signal. The optical stage consists of optical filters that slices the signal into smaller sub-bands and each is detected by a photodetector. A feedforward neural network and reservoir computing are compared to reconstruct the full signal from the slices and mitigate the chromatic dispersion. Both equalizers have shown similar performance with the advantage of the reservoir computing requiring fewer inputs and easier training process. In this work, we have compared the linear and nonlinear activation functions in the feedforward neural network to investigate the gain of using a nonlinear equalizer. The maximum transmission reach is reduced almost to half, ≍45 km, when using the linear. The performance is also reduced if a reduced number of slices is used in the receiver, as we have demonstrated. In this case, using 2 slices to reduce the complexity of the system, instead of the total 4, we have shown a ≍55 km transmission reach below KP4 FEC limit. In this work we have also provided a numerical comparison with 4x8 GBd subcarriers system. The results have shown a 40 km increase in transmission reach compared to the proposed optoelectronic system. The trade-off between performance and complexity should be analyzed for each case, as a different hardware is required in each situation.
Original languageEnglish
JournalJournal of Lightwave Technology
Issue number8
Pages (from-to)2460-2467
Publication statusPublished - 2021


  • Short-reach transmission
  • Direct-detection
  • Reservoir computing
  • Signal equalization
  • Chromatic dispersion


Dive into the research topics of 'Experimental Investigation of Optoelectronic receiver with Reservoir Computing in Short Reach Optical Fiber Communications'. Together they form a unique fingerprint.

Cite this