Experimental demonstration of water based tunable metasurface

A simple dynamically tunable metasurface (two-dimensional metamaterial) operating at microwave frequencies is developed and experimentally investigated. Conceptually, the simplicity of the approach is granted by reconfigurable properties of unit cells partially filled with distilled water. The transmission spectra of the metasurface for linear and circular polarizations of the incident wave were experimentally measured under the metasurface rotation around a horizontal axis. The changes in the transmission coefficient magnitude up to 8 dB at 1.25 GHz are reported while rotating the metasurface by the 90 degrees angle. The proposed approach manifests the cheap and accessible route for the electromagnetic wave control in the microwave region with the help of metasurfaces. Published by AIP Publishing.

General information
Publication status: Published
Organisations: Department of Photonics Engineering, Metamaterials, St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO)
Number of pages: 5
Publication date: 2016
Peer-reviewed: Yes

Publication information
Volume: 109
Issue number: 1
Article number: 011901
ISSN (Print): 0003-6951
Ratings:
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 2.67 SJR 1.673 SNIP 1.266
Web of Science (2016): Indexed yes
Original language: English
Keywords: PHYSICS,, DIELECTRIC METAMATERIALS, Metamaterials and structures (microwave), electromagnetic wave polarisation, microwave metamaterials, microwave spectra, water based tunable metasurface, dynamically tunable metasurface, two-dimensional metamaterial, microwave frequency, unit cell reconfigurable properties, distilled water, transmission spectra, incident wave linear polarizations, incident wave circular polarizations, metasurface rotation, horizontal axis, transmission coefficient magnitude, electromagnetic wave control, microwave region, frequency 1.25 GHz.

Research output: Contribution to journal › Journal article – Annual report year: 2016 › Research › peer-review