Experimental data of the aqueous NH$_3$ and CO$_2$ absorption at temperatures from 15 °C to 35 °C, NH$_3$ concentrations from 5% to 15% and CO$_2$ loadings from 0.2 to 0.6 measured with the Wetted Wall Column - DTU Orbit (12/08/2019)

Experimental data of the aqueous NH$_3$ and CO$_2$ absorption at temperatures from 15 °C to 35 °C, NH$_3$ concentrations from 5% to 15% and CO$_2$ loadings from 0.2 to 0.6 measured with the Wetted Wall Column

The absorption between aqueous NH$_3$ and CO$_2$ is studied using the Wetted Wall Column in order to show the effect of the solvent condition on the rate of reaction. A total of 27 different cases are investigated in the region defined by temperatures from 15°C to 35°C, NH$_3$ concentrations from 5% to 15% and CO$_2$ loadings from 0.2 to 0.6. The paper reports the data measured during the experiments, the experimental apparatus description and the experimental procedure. The data here presented are both the raw data measured with their uncertainty and the final value of the overall mass transfer coefficient. The overall mass transfer coefficient is the result of the raw data treatment explained in the research paper related to this data. The data here reported are analyzed in the paper by Lillia et al. (2018) [1].

General information
Publication status: Published
Organisations: Department of Chemical and Biochemical Engineering, CERE – Center for Energy Resources Engineering, Politecnico University of Milan
Contributors: Lillia, S., Bonalumi, D., Fosbøl, P. L., Thomsen, K., Valenti, G.
Pages: 1240-1244
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Data in Brief
Volume: 17
ISSN (Print): 2352-3409
Ratings:
Scopus rating (2018): CiteScore 0.93
Original language: English
Electronic versions:
1_s2.0_S235234091830163X_main.pdf
DOI: 10.1016/j.dib.2018.02.047

Bibliographical note
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Source: FindIt
Source-ID: 2396878594
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review