Experimental Characterization of Acoustic Streaming in Gradients of Density and Compressibility

Research output: Contribution to journalJournal article – Annual report year: 2019Researchpeer-review

Documents

DOI

View graph of relations

Suppression of boundary-driven Rayleigh streaming has recently been demonstrated for fluids of spatial inhomogeneity in density and compressibility owing to the competition between the boundary-layer-induced streaming stress and the inhomogeneity-induced acoustic body force. To understand the implications of this for acoustofluidic particle handling in the submicrometer regime, we here characterize acoustic streaming by general defocusing particle tracking inside a half-wavelength acoustic resonator filled with two miscible aqueous solutions of different density and speed of sound by adjusting the mass fraction of solute molecules. We follow the temporal evolution of the system as the solute molecules become homogenized by diffusion and advection. The acoustic streaming is suppressed in the bulk of the microchannel for 70-200 s, depending on the choice of inhomogeneous solutions. From confocal measurements of the concentration field of fluorescently labeled Ficoll solute molecules, we conclude that the temporal evolution of the acoustic streaming depends on the diffusivity and the initial distribution of these molecules. Suppression and deformation of the streaming rolls are observed for inhomogeneities in the solute mass fraction down to 0.1%.
Original languageEnglish
Article number024018
JournalPhysical Review Applied
Volume11
Issue number2
Number of pages11
ISSN2331-7019
DOIs
Publication statusPublished - 2019
CitationsWeb of Science® Times Cited: No match on DOI

Download statistics

No data available

ID: 169035518