Experimental and numerical validation of active flaps for wind turbine blades - DTU Orbit (16/10/2019)

Experimental and numerical validation of active flaps for wind turbine blades

An industrial active flap concept for wind turbine rotor blades is validated numerically by means of CFD, as well as experimentally in a wind tunnel environment. This paper presents the numerical and experimental results, as well as a discussion regarding the testing of airfoils equipped with active flaps with a highly loaded aft portion. A conceptual implementation for an offshore wind turbine and the potential for load reduction is shown by means of aeroelastic calculations. The work presented herein is conducted within the frame of the Induflap2 project and is partially funded by the Danish funding board EUDP.

General information
Publication status: Published
Organisations: Department of Wind Energy, Aerodynamic design, Siemens Gamesa Renewable Energy
Corresponding author: Gomez Gonzalez, A.
Number of pages: 10
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Journal of Physics: Conference Series
Volume: 1037
Issue number: 2
Article number: 022039
ISSN (Print): 1742-6596
Ratings:
BFI (2018): BFI-level 1
Scopus rating (2018): CiteScore 0.51 SJR 0.221 SNIP 0.454
Original language: English
Electronic versions:
DOIs: 10.1088/1742-6596/1037/2/022039

Bibliographical note
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Source: FindIt
Source ID: 2435911069
Research output: Contribution to journal › Conference article – Annual report year: 2018 › Research › peer-review