Examining the rudimentary steps of the oxygen reduction reaction on single-atomic Pt using Ti-based non-oxide supports

Young Joo Tak, Sungeun Yang, Hyunjoo Lee, Dong Hee Lim, Aloysius Soon*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

123 Downloads (Pure)

Abstract

In the attempt to reduce the high-cost and improve the overall durability of Pt-based electrocatalysts for the oxygen reduction reaction (ORR), density-functional theory (DFT) calculations have been performed to study the energetics of the elementary steps that occur during ORR on TiN(100)- and TiC(100)-supported single Pt atoms. The O2 and OOH* dissociation processes on Pt/TiN(100) are determined to be non-activated (i.e. "barrier-less" dissociation) while an activation energy barrier of 0.19 and 0.51eV is found for these dissociation processes on Pt/TiC(100), respectively. Moreover, the series pathway (which is characterized by the stable OOH* molecular intermediate) on Pt/TiC(100) is predicted to be more favorable than the direct pathway. Our electronic structure analysis supports a strong synergistic co-operative effect by these non-oxide supports (TiN and TiC) on the reduced state of the single-atom Pt catalyst, and directly influences the rudimentary ORR steps on these single-atom platinized supports.
Original languageEnglish
JournalJournal of Industrial and Engineering Chemistry
Volume58
Pages (from-to)208-215
ISSN1226-086X
DOIs
Publication statusPublished - 2018

Cite this