Exact Constraint Design and its potential for Robust Embodiment - DTU Orbit (09/08/2019)

Exact Constraint Design and its potential for Robust Embodiment

The design of exact, also referred to as minimal, constraints means applying just enough constraints between the various components of a mechanical assembly, in order to unambiguously define their positions in six degrees of freedom (3 translations, 3 rotations), their desired motions respectively. To ensure a predictable and reliable product performance, a systematic design of the corresponding elementary mechanical interfaces between components is of utmost importance. Over constraints, i.e., part-to-part connections with redundant interfaces which constrain one single degree of freedom, are largely susceptible to variation and therefore result in design solutions which frequently experience production/assembly issues, reduced performance, excessive and non-predictable wear-rates, etc.

Being a basic rule of embodiment design, literature provides various well-know and widely applied approaches for Exact Constraint Design. Examples are the calculation of a mechanisms’ mobility using the Grübler-Kutzbach criterion, the analysis of statically determinate assemblies by means of the screw theory or so called Schlussartenmatrizen, as well as the analysis of engaging surfaces in terms of location schemes or interface ambiguity. However, despite the various existing approaches, workshops with practitioners and academics have shown that the systematic design of optimal constraints appears to be cumbersome for many engineers. Based on an overview of the most relevant approaches for Exact Constraint design, this contribution therefore reviews the challenges experienced by the workshop participants, discusses the necessity of kinematically correct constraints for robustness, and derives an initial prescriptive procedure for a coherent design of constraints throughout the embodiment design phase, which, despite a variety of available approaches, seems to be still missing.

General information

Publication status: Published
Organisations: Department of Mechanical Engineering, Engineering Design and Product Development
Contributors: Eiffer, T., Howard, T. J.
Pages: 302–307
Publication date: 2017
Peer-reviewed: Yes

Publication information

Journal: Procedia CIRP
Volume: 60
ISSN (Print): 2212-8271
Ratings:
Scopus rating (2017): CiteScore 1.5 SJR 0.668 SNIP 0.982
Original language: English
Keywords: Robust Design, Kinematic Design, Design processes, Quality by Design
Electronic versions:
1_s2.0_S2212827117301439_main.pdf
DOIs:
10.1016/j.procir.2017.02.046

Bibliographical note

Copyright 2017: The authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review