Evaluation of microalgae production coupled with wastewater treatment

Research output: Contribution to journalJournal article – Annual report year: 2018Researchpeer-review

Documents

DOI

View graph of relations

In the present study the feasibility of microalgae production coupled with wastewater treatment was assessed. Continuous cultivation of Chlorella sorokiniana with wastewater was tested in lab-scale flat panel photobioreactors. Biomass productivity was determined for four dilution rates (4.32 d-1, 3.6 d-1, 1.8 d-1 and 0.72 d-1). The productivity peak was 1.524 g l-1d-1 at the dilution rate of 2.41 d-1. Nitrogen and phosphorus removals were found to be inversely proportional to dilution rates, while COD removal was found to be 50% at all the tested conditions. The biomass obtained at the highest dilution rate was characterized for its content of lipids, proteins and pigments. The average yields of fatty acid methyl esters (FAME), protein, lutein, chlorophylls and β-carotene was 62.4 mg, 388.2 mg, 1.03 mg, 11.82 mg and 0.44 mg per gram dry biomass, respectively. Economic analysis revealed that potentially more than 70% of revenue was from the production of pigments, i.e. chlorophyllin (59.6%), lutein (8.9%) and β-carotene (5.0%) while reduction in discharging costs of the treated wastewaters could account for 19.6% of the revenue. Due to the low yield of FAME and the low market price of biodiesel, the revenue from the above was found to be the least profitable (1.4%). Even when taking into account all these different revenues combined, this cultivation strategy was found with the current prices to be uneconomical. Power consumption for artificial light was responsible for the 94.5% of the production costs.
Original languageEnglish
JournalEnvironmental Technology
Volume39
Issue number5
Pages (from-to)581-592
ISSN0959-3330
DOIs
Publication statusPublished - 2018
CitationsWeb of Science® Times Cited: No match on DOI

    Research areas

  • Chlorella sorokiniana, biorefinery, economic analysis, photobioreactors, wastewaters

Download statistics

No data available

ID: 130663463