Evaluation of LSF based SOFC cathodes using cone-shaped electrodes and EIS

Kent Kammer Hansen*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

Seven compositions of (La1-xSrx)0.99FeO3-δ (x = 0, 0.05, 0.15, 0.25, 0.35, 0.50, 0.70) perovskites were synthesized using the glycine-nitrate method. The (La1-xSrx)0.99FeO3-δ compounds were characterized with powder X-ray diffraction, dilatometry, total conductivity and electrochemical impedance spectroscopy on cone-shaped electrodes using a Ce1.9Gd0.1O1.95 electrolyte. Dilatometry shows that the thermal expansion coefficient of the (La1-xSrx)0.99FeO3-δ compounds increases with increasing strontium content. Total conductivity finds is maximum for LSF35. The activity of the (La1-xSrx)0.99FeO3-δ based perovskites towards the electrochemical reduction of oxygen was strongly dependent of the strontium content, the activity being highest for the composition (La0.85Sr0.15)0.99FeO3-δ. The results indicates that Fe(III) is the catalytic active specie towards the electrochemical reduction of oxygen in a solid oxide fuel cell on (La1-xSrx)0.99FeO3-δ compounds. The results also show that oxide ion vacancies in the perovskite structure are important for the electrochemical reduction of oxygen. However, a negative effect of defect ordering (Sr2+ and oxide ion vacancies) is strongly indicated for the strontium rich compounds. Segregation of SrO to the surface might also play a detrimental effect on the activity towards the oxygen reduction reaction.
Original languageEnglish
Article number115096
JournalSolid State Ionics
Volume344
Number of pages5
ISSN0167-2738
DOIs
Publication statusPublished - 2020

Cite this

@article{f9fbda8ffc434b9485a2242c4edf0543,
title = "Evaluation of LSF based SOFC cathodes using cone-shaped electrodes and EIS",
abstract = "Seven compositions of (La1-xSrx)0.99FeO3-δ (x = 0, 0.05, 0.15, 0.25, 0.35, 0.50, 0.70) perovskites were synthesized using the glycine-nitrate method. The (La1-xSrx)0.99FeO3-δ compounds were characterized with powder X-ray diffraction, dilatometry, total conductivity and electrochemical impedance spectroscopy on cone-shaped electrodes using a Ce1.9Gd0.1O1.95 electrolyte. Dilatometry shows that the thermal expansion coefficient of the (La1-xSrx)0.99FeO3-δ compounds increases with increasing strontium content. Total conductivity finds is maximum for LSF35. The activity of the (La1-xSrx)0.99FeO3-δ based perovskites towards the electrochemical reduction of oxygen was strongly dependent of the strontium content, the activity being highest for the composition (La0.85Sr0.15)0.99FeO3-δ. The results indicates that Fe(III) is the catalytic active specie towards the electrochemical reduction of oxygen in a solid oxide fuel cell on (La1-xSrx)0.99FeO3-δ compounds. The results also show that oxide ion vacancies in the perovskite structure are important for the electrochemical reduction of oxygen. However, a negative effect of defect ordering (Sr2+ and oxide ion vacancies) is strongly indicated for the strontium rich compounds. Segregation of SrO to the surface might also play a detrimental effect on the activity towards the oxygen reduction reaction.",
author = "{Kammer Hansen}, Kent",
year = "2020",
doi = "10.1016/j.ssi.2019.115096",
language = "English",
volume = "344",
journal = "Solid State Ionics",
issn = "0167-2738",
publisher = "Elsevier",

}

Evaluation of LSF based SOFC cathodes using cone-shaped electrodes and EIS. / Kammer Hansen, Kent.

In: Solid State Ionics, Vol. 344, 115096, 2020.

Research output: Contribution to journalJournal articleResearchpeer-review

TY - JOUR

T1 - Evaluation of LSF based SOFC cathodes using cone-shaped electrodes and EIS

AU - Kammer Hansen, Kent

PY - 2020

Y1 - 2020

N2 - Seven compositions of (La1-xSrx)0.99FeO3-δ (x = 0, 0.05, 0.15, 0.25, 0.35, 0.50, 0.70) perovskites were synthesized using the glycine-nitrate method. The (La1-xSrx)0.99FeO3-δ compounds were characterized with powder X-ray diffraction, dilatometry, total conductivity and electrochemical impedance spectroscopy on cone-shaped electrodes using a Ce1.9Gd0.1O1.95 electrolyte. Dilatometry shows that the thermal expansion coefficient of the (La1-xSrx)0.99FeO3-δ compounds increases with increasing strontium content. Total conductivity finds is maximum for LSF35. The activity of the (La1-xSrx)0.99FeO3-δ based perovskites towards the electrochemical reduction of oxygen was strongly dependent of the strontium content, the activity being highest for the composition (La0.85Sr0.15)0.99FeO3-δ. The results indicates that Fe(III) is the catalytic active specie towards the electrochemical reduction of oxygen in a solid oxide fuel cell on (La1-xSrx)0.99FeO3-δ compounds. The results also show that oxide ion vacancies in the perovskite structure are important for the electrochemical reduction of oxygen. However, a negative effect of defect ordering (Sr2+ and oxide ion vacancies) is strongly indicated for the strontium rich compounds. Segregation of SrO to the surface might also play a detrimental effect on the activity towards the oxygen reduction reaction.

AB - Seven compositions of (La1-xSrx)0.99FeO3-δ (x = 0, 0.05, 0.15, 0.25, 0.35, 0.50, 0.70) perovskites were synthesized using the glycine-nitrate method. The (La1-xSrx)0.99FeO3-δ compounds were characterized with powder X-ray diffraction, dilatometry, total conductivity and electrochemical impedance spectroscopy on cone-shaped electrodes using a Ce1.9Gd0.1O1.95 electrolyte. Dilatometry shows that the thermal expansion coefficient of the (La1-xSrx)0.99FeO3-δ compounds increases with increasing strontium content. Total conductivity finds is maximum for LSF35. The activity of the (La1-xSrx)0.99FeO3-δ based perovskites towards the electrochemical reduction of oxygen was strongly dependent of the strontium content, the activity being highest for the composition (La0.85Sr0.15)0.99FeO3-δ. The results indicates that Fe(III) is the catalytic active specie towards the electrochemical reduction of oxygen in a solid oxide fuel cell on (La1-xSrx)0.99FeO3-δ compounds. The results also show that oxide ion vacancies in the perovskite structure are important for the electrochemical reduction of oxygen. However, a negative effect of defect ordering (Sr2+ and oxide ion vacancies) is strongly indicated for the strontium rich compounds. Segregation of SrO to the surface might also play a detrimental effect on the activity towards the oxygen reduction reaction.

U2 - 10.1016/j.ssi.2019.115096

DO - 10.1016/j.ssi.2019.115096

M3 - Journal article

VL - 344

JO - Solid State Ionics

JF - Solid State Ionics

SN - 0167-2738

M1 - 115096

ER -