European decision support modelling of long-term external doses received in inhabited areas contaminated by a nuclear power plant accident - 2: Post deposition contaminant mobility on outdoor surfaces - DTU Orbit (30/07/2019)

European decision support modelling of long-term external doses received in inhabited areas contaminated by a nuclear power plant accident - 2: Post deposition contaminant mobility on outdoor surfaces

To enable estimation of time-integrated external doses to persons staying in an inhabited area radioactively contaminated by aerosols and gases released in connection with a large nuclear power plant accident, additional knowledge to that described in the first part of this paper is needed on the post-deposition migration of different types of contaminants on the various relevant types of environmental surface. This part of the paper describes how the migration processes are modelled dynamically in the European standard inhabited area dose model, ERMIN, and presents the newest parametric datasets. It is explained how the total information in both parts of the paper may be used to estimate doses received over time by populations in radioactively contaminated inhabited areas.

General information
Publication status: Published
Organisations: Center for Nuclear Technologies, The Hevesy Laboratory, Radioecology and Tracer Studies
Corresponding author: Andersson, K. G.
Contributors: Hinrichsen, Y., Andersson, K. G.
Pages: 154-162
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: Journal of Environmental Radioactivity
Volume: 204
ISSN (Print): 0265-931X
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
Original language: English
Keywords: External dose, Nuclear power plant accident, Radioactive, Caesium, Weathering
DOIs: 10.1016/j.jenvrad.2019.04.009
Source: FindIt
Source-ID: 2446974594
Research output: Contribution to journal › Journal article – Annual report year: 2019 › Research › peer-review