European decision support modelling of long-term external doses received in inhabited areas contaminated by a nuclear power plant accident - 1: Initial relative dose rate contributions from different contaminated outdoor surfaces

Dose prediction tools making use of existing knowledge on the environmental behaviour of radiocontaminants are essential for justification and optimisation of recovery countermeasure strategies for contaminated inhabited areas. In this context, one necessary requirement is to estimate the relative initial contaminant distribution on different types of surfaces in the environment and the resultant initial dose rates to humans staying in the environment. This paper reports on the latest parametric refinements in this context for use in the ERMIN inhabited area dose model, which is an integral part of the European emergency management decision support systems ARGOS and RODOS.

General information
Publication status: Published
Organisations: The Hevesy Laboratory, Radioecology and Tracer Studies, Center for Nuclear Technologies
Corresponding author: Andersson, K. G.
Contributors: Hinrichsen, Y., Andersson, K. G.
Pages: 143-153
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: Journal of Environmental Radioactivity
Volume: 204
ISSN (Print): 0265-931X
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
Original language: English
DOIs:
10.1016/j.jenvrad.2019.04.008
Source: FindIt
Source-ID: 2446802373
Research output: Contribution to journal › Journal article – Annual report year: 2019 › Research › peer-review