Euclid: modelling massive neutrinos in cosmology — a code comparison

Euclid Consortium, J. Adamek*, R. E. Angulo, C. Arnold, M. Baldi, M. Biagetti, B. Bose, C. Carbone, T. Castro, J. Dakin, K. Dolag, W. Elbers, C. Fidler, C. Giocoli, S. Hannestad, F. Hassani, C. Hernandez-Aguayo, K. Koyama, B. Li, R. MaulandP. Monaco, C. Moretti, D. F. Mota, C. Partmann, G. Parimbelli, D. Potter, A. Schneider, S. Schulz, R. E. Smith, V Springel, J. Stadel, T. Tram, M. Viel, F. Villaescusa-Navarro, H. A. Winther, B. S. Wright, M. Zennaro, N. Aghanim, L. Amendola, N. Auricchio, D. Bonino, E. Branchini, M. Brescia, S. Camera, V. Capobianco, V. F. Cardone, J. Carretero, F. J. Castander, M. Castellano, S. Cavuoti, A. Cimatti, R. Cledassou, G. Congedo, L. Conversi, Y. Copin, A. Da Silva, H. Degaudenzi, M. Douspis, F. Dubath, C. A. J. Duncan, X. Dupac, S. Dusini, S. Farrens, S. Ferriol, P. Fosalba, M. Frailis, E. Franceschi, S. Galeotta, B. Garilli, W. Gillard, B. Gillis, A. Grazian, S. Haugan, W. Holmes, A. Hornstrup, K. Jahnke, S. Kermiche, A. Kiessling, M. Kilbinger, T. Kitching, M. Kunz, H. Kurki-Suonio, P. B. Lilje, I. Lloro, O. Mansutti, O. Marggraf, F. Marulli, R. Massey, E. Medinaceli, M. Meneghetti, G. Meylan, M. Moresco, L. Moscardini, E. Munari, S. -M. Niemi, C. Padilla, S. Paltani, F. Pasian, K. Pedersen, W. J. Percival, V. Pettorino, G. Polenta, M. Poncet, L. A. Popa, F. Raison, R. Rebolo, A. Renzi, J. Rhodes, G. Riccio, E. Romelli, M. Roncarelli, R. Saglia, D. Sapone, B. Sartoris, P. Schneider, T. Schrabback, A. Secroun, G. Seidel, C. Sirignano, G. Sirri, L. Stanco, J. -L. Starck, P. Tallada-Crespi, A. N. Taylor, I. Tereno, R. Toledo-Moreo, F. Torradeflot, I Tutusaus, L. Valenziano, T. Vassallo, Y. Wang, J. Weller, A. Zacchei, G. Zamorani, J. Zoubian, G. Fabbian, V Scottez

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

58 Downloads (Pure)

Abstract

The measurement of the absolute neutrino mass scale from cosmological large-scale clustering data is one of the key science goals of the Euclid mission. Such a measurement relies on precise modelling of the impact of neutrinos on structure formation, which can be studied with N-body simulations. Here we present the results from a major code comparison effort to establish the maturity and reliability of numerical methods for treating massive neutrinos. The comparison includes eleven full N-body implementations (not all of them independent), two N-body schemes with approximate time integration, and four additional codes that directly predict or emulate the matter power spectrum. Using a common set of initial data we quantify the relative agreement on the nonlinear power spectrum of cold dark matter and baryons and, for the N-body codes, also the relative agreement on the bispectrum, halo mass function, and halo bias. We find that the different numerical implementations produce fully consistent results. We can therefore be confident that we can model the impact of massive neutrinos at the sub-percent level in the most common summary statistics. We also provide a code validation pipeline for future reference.
Original languageEnglish
Article number035
JournalJournal of Cosmology and Astroparticle Physics
Volume2023
Issue number6
Number of pages50
ISSN1475-7516
DOIs
Publication statusPublished - 2023

Keywords

  • Cosmological neutrinos
  • Cosmological simulations
  • Neutrino masses from cosmology
  • Power spectrum

Fingerprint

Dive into the research topics of 'Euclid: modelling massive neutrinos in cosmology — a code comparison'. Together they form a unique fingerprint.

Cite this