Eu-NORSEWInD - Assessment of Viability of Open Source CFD Code for the Wind Industry

Matt Stickland, Tom Scanlon, Sylvie Fabre, Abdul Ahmad, Andrew Oldroyd, Torben Mikkelsen

    Research output: Chapter in Book/Report/Conference proceedingConference abstract in proceedingsResearch

    131 Downloads (Pure)

    Abstract

    Part of the overall NORSEWInD project is the use of LiDAR remote sensing (RS) systems mounted on offshore platforms to measure wind velocity profiles at a number of locations offshore. The data acquired from the offshore RS measurements will be fed into a large and novel wind speed dataset suitable for use by the wind industry. One significant problem identified early on at the NORSEWInD project planning stage was the problem of platform interference effects on the RS data. It was obvious that the airflow data measured above the mounting platforms would be distorted by the presence of the platform However; the extent to which the flow field above the various mounting platforms would be distorted was unknown. Therefore, part of the fundamental research incorporated into the NORSEWInD project was a computational and experimental investigation into the possible scale and extent of the interference. Offshore platforms have extremely complicated shapes and require a very large number of cells in the computational domain in order to generate a sufficiently high resolution of the mesh to model the flows surrounding them. The high number of cells leads to very large computational models requiring many hours of compute time to solve even on a high speed processor. One way of reducing the compute time is by employing parallel processing on a number of computational nodes. However; increasing the number of computational nodes may involve the purchase of extra licenses if using a standard commercial code. The cost of the extra licences can become the limit on the final number of nodes employed. Whilst there are significant benefits to be found when using a commercial code which has a user friendly interface and has undergone significant verification testing the financial advantages of using an open source CFD code, which may not have undergone such rigorous verification and may be more difficult to use, are attractive. This paper reports on the Computational Fluid Dynamics (CFD) modelling of the wind flows over the platforms on which the RS systems are mounted and more specifically on a comparison between the results of simulations created by the commercial code FLUENT and the open source code OpenFOAM. An assessment of the ease with which the open source code can be used is also included.
    Original languageEnglish
    Title of host publicationProceedings (online)
    PublisherEuropean Wind Energy Association (EWEA)
    Publication date2009
    Publication statusPublished - 2009
    EventEuropean Offshore Wind 2009 - Stockholm, Sweden
    Duration: 14 Sep 200916 Sep 2009
    http://www.eow2009.info/

    Conference

    ConferenceEuropean Offshore Wind 2009
    CountrySweden
    CityStockholm
    Period14/09/200916/09/2009
    Internet address

    Keywords

    • Wind energy
    • Meteorology

    Fingerprint Dive into the research topics of 'Eu-NORSEWInD - Assessment of Viability of Open Source CFD Code for the Wind Industry'. Together they form a unique fingerprint.

    Cite this