Estimation of surface impedance using different types of microphone arrays - DTU Orbit (04/10/2019)

Estimation of surface impedance using different types of microphone arrays

This study investigates microphone array methods to measure the angle dependent surface impedance of acoustic materials. The methods are based on the reconstruction of the sound field on the surface of the material, using a wave expansion formulation. The reconstruction of both the pressure and the particle velocity leads to an estimation of the surface impedance for a given angle of incidence. A porous type absorber sample is tested experimentally in anechoic conditions for different array geometries, sample sizes, incidence angles, and distances between the array and sample. In particular, the performances of a rigid spherical array and a double layer planar array are examined. The use of sparse array processing methods and conventional regularization approaches are studied. In addition, the influence of the size of the sample on the surface impedance estimation is investigated using both experimental data and numerical simulations with a boundary element model. Results indicate that the small distance between the planar array and the sample favors a more robust estimation.

General information
Publication status: Published
Organisations: Department of Electrical Engineering, Acoustic Technology, Brüel and Kjær Sound and Vibration Measurement A/S
Pages: 3842
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Journal of the Acoustical Society of America
Volume: 141
Issue number: 5
ISSN (Print): 0001-4966
Ratings:
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 1.77 SJR 0.695 SNIP 1.271
Web of Science (2017): Impact factor 1.605
Web of Science (2017): Indexed yes
Original language: English
DOIs: 10.1121/1.4988560
Source: PublicationPreSubmission
Source ID: 134009143
Research output: Contribution to journal › Conference abstract in journal – Annual report year: 2017 › Research › peer-review