Estimation of Physical Properties of Amino Acids by Group-Contribution Method

In this paper, we present group-contribution (GC) based property models for estimation of physical properties of amino acids using their molecular structural information. The physical properties modelled in this work are normal melting point (T_m), aqueous solubility (W_s), and octanol/water partition coefficient (K_{ow}) of amino acids. The developed GC-models are based on the published GC-method by Marrero and Gani (J. Marrero, R. Gani, Fluid Phase Equilib. 2001, 183-184, 183-208) with inclusion of new structural parameters (groups and molecular weight of compounds). The main objective of introducing these new structural parameters in the GC-model is to provide additional structural information for amino acids having large and complex structures and thereby improve predictions of physical properties of amino acids. The group-contribution values were calculated by regression analysis using a data-set of 239 values for T_m, 211 values for W_s, and 335 values for K_{ow}. Compared to other currently used GC-models, the developed models make significant improvements in accuracy with average absolute error of 10.8 K for T_m and logarithm-unit average absolute errors of 0.16 for K_{ow} and 0.19 for W_s.

General information
Publication status: Published
Organisations: Department of Chemical and Biochemical Engineering, KT Consortium, CERE – Center for Energy Resources Engineering, Alfa Laval
Corresponding author: Gani, R.
Contributors: Jhamb, S. V., Liang, X., Gani, R., Hukkerikar, A. S.
Pages: 148-161
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Chemical Engineering Science
Volume: 175
ISSN (Print): 0009-2509
Ratings:
BFI (2018): BFI-level 2
Scopus rating (2018): CiteScore 3.7 SJR 1.012 SNIP 1.426
Web of Science (2018): Impact factor 3.372
Web of Science (2018): Indexed yes
Original language: English
Keywords: Normal melting point, Aqueous solubility, Octanol/water partition coefficient, Group contribution method, Amino acids
Electronic versions:
MARAC_1_s2.0_S0009250917305730_main.pdf. Embargo ended: 13/09/2019
DOIs:
10.1016/j.ces.2017.09.019
Research output: Contribution to journal → Journal article – Annual report year: 2018 → Research → peer-review