TY - JOUR
T1 - Estimation of autocorrelation function and spectrum density of wave-induced responses using prolate spheroidal wave functions
AU - Takami, Tomoki
AU - Nielsen, Ulrik Dam
AU - Jensen, Jørgen Juncher
PY - 2021
Y1 - 2021
N2 - Predicting the wave-induced response in the near-future is of importance to ensure safety of ships. To achieve this target, a possible method for deterministic and conditional prediction of future responses utilizing measured data from the most recent past has been developed. Herein, accurate derivation of the autocorrelation function (ACF) is required. In this study, a new approach for deriving ACFs from measurements is proposed by introducing the Prolate Spheroidal Wave Functions (PSWF). PSWF can be used in two ways: fitting the measured response itself or fitting the sample ACF from the measurements. The paper contains various numerical demonstrations, using a stationary heave motion time series of a containership, and the effectiveness of the present approach is demonstrated by comparing with both a non-parametric and a parametric spectrum estimation method; in this case, Fast Fourier Transformation (FFT) and an Auto-Regressive (AR) model, respectively. The present PSWF-based approach leads to two important properties: (1) a smoothed ACF from the measurements, including an expression of the memory time, (2) a high frequency resolution in power spectrum densities (PSDs). Finally, the paper demonstrates that a fitting of the ACF using PSWF can be applied for deterministic motion predictions ahead of current time.
AB - Predicting the wave-induced response in the near-future is of importance to ensure safety of ships. To achieve this target, a possible method for deterministic and conditional prediction of future responses utilizing measured data from the most recent past has been developed. Herein, accurate derivation of the autocorrelation function (ACF) is required. In this study, a new approach for deriving ACFs from measurements is proposed by introducing the Prolate Spheroidal Wave Functions (PSWF). PSWF can be used in two ways: fitting the measured response itself or fitting the sample ACF from the measurements. The paper contains various numerical demonstrations, using a stationary heave motion time series of a containership, and the effectiveness of the present approach is demonstrated by comparing with both a non-parametric and a parametric spectrum estimation method; in this case, Fast Fourier Transformation (FFT) and an Auto-Regressive (AR) model, respectively. The present PSWF-based approach leads to two important properties: (1) a smoothed ACF from the measurements, including an expression of the memory time, (2) a high frequency resolution in power spectrum densities (PSDs). Finally, the paper demonstrates that a fitting of the ACF using PSWF can be applied for deterministic motion predictions ahead of current time.
KW - Autocorrelation
KW - Wave-induced response
KW - Ship motion
KW - Prolate spheroidal wave functions
U2 - 10.1007/s00773-020-00768-9
DO - 10.1007/s00773-020-00768-9
M3 - Journal article
SN - 0948-4280
VL - 26
SP - 722
EP - 791
JO - Journal of Marine Science and Technology
JF - Journal of Marine Science and Technology
ER -