View graph of relations

A number of different nanoscale zero-valent iron (nZVI) materials have been prepared and compared depending on the desired properties for the particular application, but different physicochemical properties of this prepared nZVI make it difficult to universally compare and standardize them to the same scale. In this study, we aimed to demonstrate a simple microplate-based colorimetric assay using 4-chlorophenol as an indicator with respect to the remediation of real treatment targets, such as trichloroethylene (TCE), 1,1,1-trichloroethane (TCA), and atrazine. Effect of nickel contents on 4-chlorophenol reduction was successfully investigated by the miniaturized colorimetric assay. In the same manner, the effect of nickel contents on dehalogenation of TCE, TCA, and atrazine was investigated and the pseudo-first-order kinetic constants were compared with the results for 4-chlorophenol. The similar pattern could be observed between 4-chlorophenol reduction obtained by colorimetric assay and TCE, TCA, atrazine reduction obtained by a traditional chromatographic method. The reaction kinetics does not match perfectly, but the degree of reaction can be estimated. Therefore, the colorimetric assay can be a useful and simple screening tool to determine nZVI reactivity toward halogenated organics before it is applied to a particular remediation site.
Original languageEnglish
JournalEnvironmental Engineering Research
Number of pages25
Publication statusAccepted/In press - 2019
CitationsWeb of Science® Times Cited: No match on DOI

    Research areas

  • Colorimetric assay, Dehalogenation, Nanoscale zero-valent iron, Trichloroethylene, 4-chlorophenol

Download statistics

No data available

ID: 171277424