Estimating escapement of fish and invertebrates in a Danish anchor seine

Estimating escapement of fish and invertebrates in a Danish anchor seine
The codend is generally presumed to be the place where the main selectivity of fish occurs in towed fishing gears, but other parts of the net have been found to contribute to the selectivity process of several invertebrate species. This means that conventional selectivity or survival studies may ignore the selectivity of net parts other than the codend for certain species. By attaching 12 small meshed collecting bags to different parts of a Danish anchor seine net and conducting normal commercial fishing activities, this study showed that there is a substantial escapement of fish and (especially) invertebrates from the forward parts of the seine net. For seven species of demersal fish, most fish escaped through the lower panel close to the codend. All invertebrate species were found in higher numbers in the collecting bags than in the codend where many organisms escaped in the lower panel of the wings or the belly. Mean levels of visible damage ranged from 1.00 to 3.25 for collected invertebrates and were similar for all gear parts. Common starfish (Asterias rubens), however, showed highest damage in the extension part of the net.

General information
Publication status: Published
Organisations: National Institute of Aquatic Resources, Section for Ecosystem based Marine Management, Section for Management Systems, Section for Monitoring and Data, Aalborg University, Thunen-Institut
Contributors: Noack, T., Madsen, N., Mieske, B., Frandsen, R., Wieland, K., Krag, L. A.
Pages: 2480-2488
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: ICES Journal of Marine Science
Volume: 74
Issue number: 9
ISSN (Print): 1054-3139
Ratings:
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.98
Web of Science (2017): Impact factor 2.906
Web of Science (2017): Indexed yes
Original language: English
Keywords: Damage Index, Ecosystem effects, Sea bed impacts, Selectivity, Skagerrak, Unaccounted mortality
Electronic versions:
Postprint. Embargo ended: 15/11/2018
DOIs:
10.1093/icesjms/fsx066
Source: FindIt
Source-ID: 2357560260
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review