Enzyme Immobilization on Inorganic Surfaces for Membrane Reactor Applications: Mass Transfer Challenges, Enzyme Leakage and Reuse of Materials

Sigyn Björk Sigurdardóttir, Jonas Lehmann, Simona Ovtar, Jean‐Claude Grivel, Michela Della Negra, Andreas Kaiser, Manuel Pinelo*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

Enzyme immobilization is an established method for the enhancement of enzyme stability and reusability, two factors that are of great importance for industrial biocatalytic applications. Immobilization can be achieved by different methods and on a variety of carrier materials, both organic and inorganic. Inorganic materials provide the advantage of high stability and long service life which, together with the prolonged service life of the immobilized enzyme, can benefit the process economy. However, enzyme immobilization and increased stability often come at the cost of decreased enzyme activity. The main challenges involved in the design of an efficient immobilized enzyme system is to obtain both retention of high enzyme activity, enhanced stability and reusability, which is a complicated task, given the many variables involved, and the large numbers of methods and materials available. Simultaneously, new carrier materials and morphologies are constantly being developed. An investigation of enzyme immobilization systems on inorganic materials, with special emphasis on inorganic membranes, has been conducted in order to evaluate the effects of the immobilization system on the enzyme properties upon immobilization, i.e., activity, stability and reusability. The material properties of the enzyme carriers (particles and membranes) and their effects on the success of immobilization are described here. Furthermore, the reuse of inorganic membranes as enzyme carriers has been investigated and the reported examples show high ability of regeneration. To the best of our knowledge, this is the first review on enzyme immobilization focusing on the three fundamental aspects to consider when dealing with the topic: catalytic properties, enzyme leakage and reusability. Abbreviations: β‐Gal: β‐d‐galactosidase; ADH: alcohol dehydrogenase; AFM: atomic force microscopy; APTES: 3‐aminopropyltriethoxysilane; APTMS: 3‐aminopropyltrimethoxysilane; BPA: bisphenol A; BSA: bovine serum albumin; CA: carbonic anhydrase; CALB: Candida antartica lipase B; CD: circular dichroism; CDI: carbonyldiimidazole; CLEA: cross‐linked enzyme aggregates; CLSM: confocal laser scanning microscopy; CNT: carbon nanotube; CPG: controlled pore glass; CRL: Candida rugosa lipase; DMeDMOS: dimethyldimethoxysilane; DRIFT: diffuse reflectance Fourier transform infrared; E2: 17β‐estradiol; EDC: N‐(3‐dimethylaminopropyl)‐N′‐ethylcarbodiimide hydrochloride; EDS: electron dispersive spectroscopy; FDH: formate dehydrogenase; FESEM: field emission scanning microscopy; FT‐IR: Fourier transform infrared spectroscopy; GA: glutaraldehyde; GCSZn: coal fly ashes glass‐ceramic zinc sulfate; GOD: glucose oxidase; GPS: 3‐(glycidyloxypropyl)trimethoxysilane; HDMI: hexamethylene diisocyanate; HRP: horseradish peroxidase; IEP: isoelectric point; IPTES: (3‐isocyanatopropyl)triethoxysilane; IR: infrared spectroscopy; LbL: layer‐by‐layer: MCP: metallic ceramic powder; MeTEOS: methyltriethoxysilane; MF: microfiltration; MML: Mucor miehei lipase; MNP: magnetic nanoparticle; MPTMS: 3‐mercaptopropyltrimethoxysilane; NHS: N‐hydroxysuccinimidyl; PAH: poly(allylamine hydrochloride); PEI: polyethyleneimine; PEG: polyethylene glycol; PES: polyether sulfone; PM‐IRRAS: polarization modulation infrared reflection absorption spectroscopy; pNPA: para‐nitrophenyl acetate; pNPP: para‐nitrophenyl palmitate; PSS: polystyrene sulfonate; PTMS: phenyltrimethoxysilane; ROL: Rhizopus oryzae lipase; SCAD: Saccharomyces cerevisiae alcohol dehydrogenase; SDS: sodium dodecyl sulfate; SDS‐2: sodium dodecyl sulfonate; SEM: scanning electron microscopy; TEM: transmission electron microscopy; TEOS: tetraethoxysilane; TGA: thermogravimetric analysis; TLL: Thermomyces lanuginosa lipase; TMP: transmembrane pressure; TTIP: titanium tetraisoproxide; TVL: Trametes versicolor laccase; UF: ultrafiltration; VTMS: vinyltrimethylsilane
Original languageEnglish
JournalAdvanced Synthesis and Catalysis
Volume360
Issue number14
Pages (from-to)2578-2607
ISSN1615-4150
DOIs
Publication statusPublished - 2018

Keywords

  • Enzyme immobilization
  • Enzyme leakage
  • Inorganic materials
  • Reusability of immobilization supports

Cite this

@article{f9155d3fcbd44a7899bdf11c28eb959a,
title = "Enzyme Immobilization on Inorganic Surfaces for Membrane Reactor Applications: Mass Transfer Challenges, Enzyme Leakage and Reuse of Materials",
abstract = "Enzyme immobilization is an established method for the enhancement of enzyme stability and reusability, two factors that are of great importance for industrial biocatalytic applications. Immobilization can be achieved by different methods and on a variety of carrier materials, both organic and inorganic. Inorganic materials provide the advantage of high stability and long service life which, together with the prolonged service life of the immobilized enzyme, can benefit the process economy. However, enzyme immobilization and increased stability often come at the cost of decreased enzyme activity. The main challenges involved in the design of an efficient immobilized enzyme system is to obtain both retention of high enzyme activity, enhanced stability and reusability, which is a complicated task, given the many variables involved, and the large numbers of methods and materials available. Simultaneously, new carrier materials and morphologies are constantly being developed. An investigation of enzyme immobilization systems on inorganic materials, with special emphasis on inorganic membranes, has been conducted in order to evaluate the effects of the immobilization system on the enzyme properties upon immobilization, i.e., activity, stability and reusability. The material properties of the enzyme carriers (particles and membranes) and their effects on the success of immobilization are described here. Furthermore, the reuse of inorganic membranes as enzyme carriers has been investigated and the reported examples show high ability of regeneration. To the best of our knowledge, this is the first review on enzyme immobilization focusing on the three fundamental aspects to consider when dealing with the topic: catalytic properties, enzyme leakage and reusability. Abbreviations: β‐Gal: β‐d‐galactosidase; ADH: alcohol dehydrogenase; AFM: atomic force microscopy; APTES: 3‐aminopropyltriethoxysilane; APTMS: 3‐aminopropyltrimethoxysilane; BPA: bisphenol A; BSA: bovine serum albumin; CA: carbonic anhydrase; CALB: Candida antartica lipase B; CD: circular dichroism; CDI: carbonyldiimidazole; CLEA: cross‐linked enzyme aggregates; CLSM: confocal laser scanning microscopy; CNT: carbon nanotube; CPG: controlled pore glass; CRL: Candida rugosa lipase; DMeDMOS: dimethyldimethoxysilane; DRIFT: diffuse reflectance Fourier transform infrared; E2: 17β‐estradiol; EDC: N‐(3‐dimethylaminopropyl)‐N′‐ethylcarbodiimide hydrochloride; EDS: electron dispersive spectroscopy; FDH: formate dehydrogenase; FESEM: field emission scanning microscopy; FT‐IR: Fourier transform infrared spectroscopy; GA: glutaraldehyde; GCSZn: coal fly ashes glass‐ceramic zinc sulfate; GOD: glucose oxidase; GPS: 3‐(glycidyloxypropyl)trimethoxysilane; HDMI: hexamethylene diisocyanate; HRP: horseradish peroxidase; IEP: isoelectric point; IPTES: (3‐isocyanatopropyl)triethoxysilane; IR: infrared spectroscopy; LbL: layer‐by‐layer: MCP: metallic ceramic powder; MeTEOS: methyltriethoxysilane; MF: microfiltration; MML: Mucor miehei lipase; MNP: magnetic nanoparticle; MPTMS: 3‐mercaptopropyltrimethoxysilane; NHS: N‐hydroxysuccinimidyl; PAH: poly(allylamine hydrochloride); PEI: polyethyleneimine; PEG: polyethylene glycol; PES: polyether sulfone; PM‐IRRAS: polarization modulation infrared reflection absorption spectroscopy; pNPA: para‐nitrophenyl acetate; pNPP: para‐nitrophenyl palmitate; PSS: polystyrene sulfonate; PTMS: phenyltrimethoxysilane; ROL: Rhizopus oryzae lipase; SCAD: Saccharomyces cerevisiae alcohol dehydrogenase; SDS: sodium dodecyl sulfate; SDS‐2: sodium dodecyl sulfonate; SEM: scanning electron microscopy; TEM: transmission electron microscopy; TEOS: tetraethoxysilane; TGA: thermogravimetric analysis; TLL: Thermomyces lanuginosa lipase; TMP: transmembrane pressure; TTIP: titanium tetraisoproxide; TVL: Trametes versicolor laccase; UF: ultrafiltration; VTMS: vinyltrimethylsilane",
keywords = "Enzyme immobilization, Enzyme leakage, Inorganic materials, Reusability of immobilization supports",
author = "Sigurdard{\'o}ttir, {Sigyn Bj{\"o}rk} and Jonas Lehmann and Simona Ovtar and Jean‐Claude Grivel and {Della Negra}, Michela and Andreas Kaiser and Manuel Pinelo",
year = "2018",
doi = "10.1002/adsc.201800307",
language = "English",
volume = "360",
pages = "2578--2607",
journal = "Advanced Synthesis & Catalysis",
issn = "1615-4150",
publisher = "Wiley - V C H Verlag GmbH & Co. KGaA",
number = "14",

}

TY - JOUR

T1 - Enzyme Immobilization on Inorganic Surfaces for Membrane Reactor Applications: Mass Transfer Challenges, Enzyme Leakage and Reuse of Materials

AU - Sigurdardóttir, Sigyn Björk

AU - Lehmann, Jonas

AU - Ovtar, Simona

AU - Grivel, Jean‐Claude

AU - Della Negra, Michela

AU - Kaiser, Andreas

AU - Pinelo, Manuel

PY - 2018

Y1 - 2018

N2 - Enzyme immobilization is an established method for the enhancement of enzyme stability and reusability, two factors that are of great importance for industrial biocatalytic applications. Immobilization can be achieved by different methods and on a variety of carrier materials, both organic and inorganic. Inorganic materials provide the advantage of high stability and long service life which, together with the prolonged service life of the immobilized enzyme, can benefit the process economy. However, enzyme immobilization and increased stability often come at the cost of decreased enzyme activity. The main challenges involved in the design of an efficient immobilized enzyme system is to obtain both retention of high enzyme activity, enhanced stability and reusability, which is a complicated task, given the many variables involved, and the large numbers of methods and materials available. Simultaneously, new carrier materials and morphologies are constantly being developed. An investigation of enzyme immobilization systems on inorganic materials, with special emphasis on inorganic membranes, has been conducted in order to evaluate the effects of the immobilization system on the enzyme properties upon immobilization, i.e., activity, stability and reusability. The material properties of the enzyme carriers (particles and membranes) and their effects on the success of immobilization are described here. Furthermore, the reuse of inorganic membranes as enzyme carriers has been investigated and the reported examples show high ability of regeneration. To the best of our knowledge, this is the first review on enzyme immobilization focusing on the three fundamental aspects to consider when dealing with the topic: catalytic properties, enzyme leakage and reusability. Abbreviations: β‐Gal: β‐d‐galactosidase; ADH: alcohol dehydrogenase; AFM: atomic force microscopy; APTES: 3‐aminopropyltriethoxysilane; APTMS: 3‐aminopropyltrimethoxysilane; BPA: bisphenol A; BSA: bovine serum albumin; CA: carbonic anhydrase; CALB: Candida antartica lipase B; CD: circular dichroism; CDI: carbonyldiimidazole; CLEA: cross‐linked enzyme aggregates; CLSM: confocal laser scanning microscopy; CNT: carbon nanotube; CPG: controlled pore glass; CRL: Candida rugosa lipase; DMeDMOS: dimethyldimethoxysilane; DRIFT: diffuse reflectance Fourier transform infrared; E2: 17β‐estradiol; EDC: N‐(3‐dimethylaminopropyl)‐N′‐ethylcarbodiimide hydrochloride; EDS: electron dispersive spectroscopy; FDH: formate dehydrogenase; FESEM: field emission scanning microscopy; FT‐IR: Fourier transform infrared spectroscopy; GA: glutaraldehyde; GCSZn: coal fly ashes glass‐ceramic zinc sulfate; GOD: glucose oxidase; GPS: 3‐(glycidyloxypropyl)trimethoxysilane; HDMI: hexamethylene diisocyanate; HRP: horseradish peroxidase; IEP: isoelectric point; IPTES: (3‐isocyanatopropyl)triethoxysilane; IR: infrared spectroscopy; LbL: layer‐by‐layer: MCP: metallic ceramic powder; MeTEOS: methyltriethoxysilane; MF: microfiltration; MML: Mucor miehei lipase; MNP: magnetic nanoparticle; MPTMS: 3‐mercaptopropyltrimethoxysilane; NHS: N‐hydroxysuccinimidyl; PAH: poly(allylamine hydrochloride); PEI: polyethyleneimine; PEG: polyethylene glycol; PES: polyether sulfone; PM‐IRRAS: polarization modulation infrared reflection absorption spectroscopy; pNPA: para‐nitrophenyl acetate; pNPP: para‐nitrophenyl palmitate; PSS: polystyrene sulfonate; PTMS: phenyltrimethoxysilane; ROL: Rhizopus oryzae lipase; SCAD: Saccharomyces cerevisiae alcohol dehydrogenase; SDS: sodium dodecyl sulfate; SDS‐2: sodium dodecyl sulfonate; SEM: scanning electron microscopy; TEM: transmission electron microscopy; TEOS: tetraethoxysilane; TGA: thermogravimetric analysis; TLL: Thermomyces lanuginosa lipase; TMP: transmembrane pressure; TTIP: titanium tetraisoproxide; TVL: Trametes versicolor laccase; UF: ultrafiltration; VTMS: vinyltrimethylsilane

AB - Enzyme immobilization is an established method for the enhancement of enzyme stability and reusability, two factors that are of great importance for industrial biocatalytic applications. Immobilization can be achieved by different methods and on a variety of carrier materials, both organic and inorganic. Inorganic materials provide the advantage of high stability and long service life which, together with the prolonged service life of the immobilized enzyme, can benefit the process economy. However, enzyme immobilization and increased stability often come at the cost of decreased enzyme activity. The main challenges involved in the design of an efficient immobilized enzyme system is to obtain both retention of high enzyme activity, enhanced stability and reusability, which is a complicated task, given the many variables involved, and the large numbers of methods and materials available. Simultaneously, new carrier materials and morphologies are constantly being developed. An investigation of enzyme immobilization systems on inorganic materials, with special emphasis on inorganic membranes, has been conducted in order to evaluate the effects of the immobilization system on the enzyme properties upon immobilization, i.e., activity, stability and reusability. The material properties of the enzyme carriers (particles and membranes) and their effects on the success of immobilization are described here. Furthermore, the reuse of inorganic membranes as enzyme carriers has been investigated and the reported examples show high ability of regeneration. To the best of our knowledge, this is the first review on enzyme immobilization focusing on the three fundamental aspects to consider when dealing with the topic: catalytic properties, enzyme leakage and reusability. Abbreviations: β‐Gal: β‐d‐galactosidase; ADH: alcohol dehydrogenase; AFM: atomic force microscopy; APTES: 3‐aminopropyltriethoxysilane; APTMS: 3‐aminopropyltrimethoxysilane; BPA: bisphenol A; BSA: bovine serum albumin; CA: carbonic anhydrase; CALB: Candida antartica lipase B; CD: circular dichroism; CDI: carbonyldiimidazole; CLEA: cross‐linked enzyme aggregates; CLSM: confocal laser scanning microscopy; CNT: carbon nanotube; CPG: controlled pore glass; CRL: Candida rugosa lipase; DMeDMOS: dimethyldimethoxysilane; DRIFT: diffuse reflectance Fourier transform infrared; E2: 17β‐estradiol; EDC: N‐(3‐dimethylaminopropyl)‐N′‐ethylcarbodiimide hydrochloride; EDS: electron dispersive spectroscopy; FDH: formate dehydrogenase; FESEM: field emission scanning microscopy; FT‐IR: Fourier transform infrared spectroscopy; GA: glutaraldehyde; GCSZn: coal fly ashes glass‐ceramic zinc sulfate; GOD: glucose oxidase; GPS: 3‐(glycidyloxypropyl)trimethoxysilane; HDMI: hexamethylene diisocyanate; HRP: horseradish peroxidase; IEP: isoelectric point; IPTES: (3‐isocyanatopropyl)triethoxysilane; IR: infrared spectroscopy; LbL: layer‐by‐layer: MCP: metallic ceramic powder; MeTEOS: methyltriethoxysilane; MF: microfiltration; MML: Mucor miehei lipase; MNP: magnetic nanoparticle; MPTMS: 3‐mercaptopropyltrimethoxysilane; NHS: N‐hydroxysuccinimidyl; PAH: poly(allylamine hydrochloride); PEI: polyethyleneimine; PEG: polyethylene glycol; PES: polyether sulfone; PM‐IRRAS: polarization modulation infrared reflection absorption spectroscopy; pNPA: para‐nitrophenyl acetate; pNPP: para‐nitrophenyl palmitate; PSS: polystyrene sulfonate; PTMS: phenyltrimethoxysilane; ROL: Rhizopus oryzae lipase; SCAD: Saccharomyces cerevisiae alcohol dehydrogenase; SDS: sodium dodecyl sulfate; SDS‐2: sodium dodecyl sulfonate; SEM: scanning electron microscopy; TEM: transmission electron microscopy; TEOS: tetraethoxysilane; TGA: thermogravimetric analysis; TLL: Thermomyces lanuginosa lipase; TMP: transmembrane pressure; TTIP: titanium tetraisoproxide; TVL: Trametes versicolor laccase; UF: ultrafiltration; VTMS: vinyltrimethylsilane

KW - Enzyme immobilization

KW - Enzyme leakage

KW - Inorganic materials

KW - Reusability of immobilization supports

U2 - 10.1002/adsc.201800307

DO - 10.1002/adsc.201800307

M3 - Journal article

VL - 360

SP - 2578

EP - 2607

JO - Advanced Synthesis & Catalysis

JF - Advanced Synthesis & Catalysis

SN - 1615-4150

IS - 14

ER -