Environmental assessment of solid waste systems and technologies: EASEWASTE - DTU Orbit (29/09/2019)

Environmental assessment of solid waste systems and technologies: EASEWASTE

A new model has been developed for evaluating the overall resource consumption and environmental impacts of municipal solid waste management systems by the use of life cycle assessment. The model is named EASEWASTE (Environmental Assessment of Solid Waste Systems and Technologies) and is able to compare different waste management strategies, waste treatment methods and waste process technologies. The potential environmental impacts can be traced back to the most important processes and waste fractions that contribute to the relevant impacts. A model like EASEWASTE can be used by waste planners to optimize current waste management systems with respect to environmental achievements and by authorities to set guidelines and regulations and to evaluate different strategies for handling of waste. The waste hierarchy has for decades been governing waste management but the ranking of handling approaches may not always be the most environmentally friendly. The EASEWASTE model can identify the most environmentally sustainable solution, which may differ among waste materials and regions and can add valuable information about environmental achievements from each process in a solid waste management system.

General information
Publication status: Published
Organisations: Department of Environmental Engineering, Department of Management Engineering, Innovation and Sustainability
Contributors: Kirkeby, J. T., Birgisdottir, H., Hansen, T. L., Christensen, T. H., Bhandar, G. S., Hauschild, M. Z.
Pages: 3-15
Publication date: 2006
Peer-reviewed: Yes

Publication information
Journal: Waste Management and Research
Volume: 24
Issue number: 1
ISSN (Print): 0734-242X
Ratings:
Scopus rating (2006): SJR 0.317 SNIP 0.762
Web of Science (2006): Indexed yes
Original language: English
DOIs:
10.1177/0734242X06062580
Source: orbit
Source ID: 186459
Research output: Contribution to journal › Journal article – Annual report year: 2006 › Research › peer-review