Enhancing the phase segregation and connectivity of hydrophilic channels by blending highly sulfonated graft copolymers with fluorous homopolymers

The influence of tuning the ionic content of membranes by blending, as opposed to varying the degree of sulfonation, is evaluated. Membranes of fully sulfonated poly(vinylidene fluoride-co-chlorotrifluoroethylene)-g-poly(styrene sulfonic acid) blended with PVDF were prepared and investigated for morphology, water sorption, and proton transport properties. The blend membranes exhibit conductivities superior to pure graft copolymers under fully humidified conditions despite their lower water uptake. Transmission electron microscopy images of the blends reveal that the membranes comprise a combination of macro-phase segregated regions of ion-rich and PVDF-rich domains, and, at higher PVDF contents, ion-rich nano-scale domains within fluorine-rich domains. © 2013 The Royal Society of Chemistry.

General information
Publication status: Published
Organisations: Department of Chemical and Biochemical Engineering, The Danish Polymer Centre, Simon Fraser University
Contributors: Nielsen, M. M., Ching-Ching Yang, A., Jankova Atanasova, K., Hvilsted, S., Holdcroft, S.
Pages: 8118-8126
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: Journal of Materials Chemistry A
Volume: 1
Issue number: 28
ISSN (Print): 2050-7488
Ratings:
BFI (2013): BFI-level 1
Web of Science (2013): Impact factor
ISI indexed (2013): ISI indexed no
Web of Science (2013): Indexed yes
Original language: English
Keywords: Transmission electron microscopy, Transport properties, Graft copolymers
DOI:
10.1039/c3ta11347g
Source: dtu
Source ID: u:8049
Research output: Contribution to journal › Journal article – Annual report year: 2014 › Research › peer-review