Abstract
4-α-glucanotransferase is used to produce thermoreversible starch gels to alleviate limitations to use of starch gels in repetitively heat-processed foods. However, the gel strength was weakened after this enzyme modification. In the present study, treatment by amylosucrase (NpAS) of corn starch and sucrose was applied to retain the gel thermoreversibility and eliminate the shortcoming caused by 4-α-glucanotransferase (TuαGT). Changes in molecular structure, rheological and retrogradation properties of modified starch were investigated after NpAS and TuαGT sequential and one-pot treatment, respectively. The apparent amylose content was reduced and increased by sequential and one-pot treatments, respectively, compared to single TuαGT modification. Chain length profiles showed higher proportion of degree of polymerization (DP) ≥ 13 by sequential treatment, whereas DP 6–12 was higher after one-pot treatment. All modified starches had reduced molecular weight. G' and G“ increased by dual enzyme compared to single TuαGT treatment having little effect on retrogradation. Interestingly, starch subjected to 3 h one-pot treatment caused G' and G" temperature curves to cross-over, improving thermoreversible properties. The results indicate that NpAS treatment compensated for loss of starch gel strength caused by TuαGT and offered possibility to provide a wider range of thermoreversible starches.
Original language | English |
---|---|
Journal | International Journal of Biological Macromolecules |
Volume | 209 |
Issue number | Part A |
Pages (from-to) | 1-8 |
Number of pages | 8 |
ISSN | 0141-8130 |
DOIs | |
Publication status | Published - 2022 |
Keywords
- Corn starch
- 4-α-glucanotransferase
- Amylosucase
- Molecular structure
- Rheological properties
- Retrogradation properties