Enhancing damping of gas bearings using linear parameter-varying control

Journal bearings can be lubricated through controllable injectors using pressurised fluids, whose viscosity highly determines the dynamic responses of the rotating machine. The use of fluids with low viscosity is attracting a growing interest due to the reduced friction forces and consequent losses when the machine is in operation. However, low viscosity also entails poor damping properties, which may lead to degraded performance or even instability when the rotating machine operates at or near one of the modal frequencies. This issue can be properly addressed by employing active feedback control systems to regulate the injection pressure of the fluid. Due to the strong dependencies of system performance on system parameters, the sought controller should be robust over a large range of operational conditions. This paper addresses the damping enhancement of controllable gas bearings through robust control approaches. Through an extensive experimental campaign the paper evaluates two robust controllers, a linear parameter-varying (LPV) controller and \(\infty \) controller, on their capability to guarantee stability and performance of a gas bearing across the large operational envelopes in rotational speed and injection pressure. The control systems are designed applying state-of-the-art methods in the respective areas. The experimental results clearly demonstrate the feasibility of enhancing the damping properties of a gas bearing by means of robust control methods.

General information
Publication status: Published
Organisations: Department of Electrical Engineering, Automation and Control, Department of Mechanical Engineering, Solid Mechanics
Contributors: Theisen, L. R. S., Niemann, H. H., Galeazzi, R., Santos, I.
Pages: 48-64
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Journal of Sound and Vibration
Volume: 365
ISSN (Print): 0022-460X
Ratings:
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.2 SJR 1.36 SNIP 2.089
Web of Science (2017): Impact factor 2.618
Web of Science (2017): Indexed yes
Original language: English
Keywords: Controllable gas bearings, Experimental validation, Linear parameter-varying control;, Rotordynamics
Electronic versions:
JSV_16_D_0836_electronic_version.pdf. Embargo ended: 22/02/2019
DOIs:
10.1016/j.jsv.2017.02.021
Source: PublicationPreSubmission
Source ID: 129447425
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review