Engineering synergy in biotechnology

In this article, the author focuses on approaches in metabolic engineering and synthetic biology for the creation of efficient cell factories, which can be used to convert biomass and other feedstocks for the generation of chemicals. Topics discussed include development of restriction enzymes, engineering plasmids and recyclable markers, production of 1,3-propanediol using a metabolically engineered Escherichia coli and production of isobutanol by using metabolically engineered yeast.

General information
Publication status: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, Fungal Cell Factories, New Bioactive Compounds, Network Reconstruction in Silico Biology, Swiss Federal Institute of Technology, Technical University of Denmark, University of California, Massachusetts Institute of Technology
Contributors: Nielsen, J., Fussenegger, M., Keasling, J., Yup Lee, S., Liao, J. C., Prather, K., Palsson, B.
Number of pages: 4
Pages: 319-322
Publication date: 2014
Peer-reviewed: Yes

Publication information
Journal: Nature Chemical Biology
Volume: 10
Issue number: 5
ISSN (Print): 1552-4450
Ratings:
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 8.78 SJR 7.184 SNIP 2.734
Web of Science (2014): Impact factor 12.996
Web of Science (2014): Indexed yes
Original language: English
Keywords: BIOCHEMISTRY, ESCHERICHIA-COLI, STRAIN IMPROVEMENT, SYNTHETIC BIOLOGY, CONSTRUCTION, PATHWAYS, GENOME, SWITCH, SYNTHETIC biology, Research
DOIs:
10.1038/nchembio.1519
Source: FindIt
Source-ID: 267176329
Research output: Contribution to journal › Journal article – Annual report year: 2014 › Research › peer-review