Abstract
The combination of strong spin-orbit coupling, large g factors, and the coupling to a superconductor can be used to create a topologically protected state in a semiconductor nanowire. Here we report on growth and characterization of hybrid epitaxial InAsSb/Al nanowires, with varying composition and crystal structure. We find the strongest spin-orbit interaction at intermediate compositions in zinc-blende InAs1-xSbx nanowires, exceeding that of both InAs and InSb materials, confirming recent theoretical studies. We show that the epitaxial InAsSb/Al interface allows for a hard induced superconducting gap and 2e transport in Coulomb charging experiments, similarly to experiments on InAs/Al and InSb/Al materials, and find measurements consistent with topological phase transitions at low magnetic fields due to large effective g factors. Finally we present a method to grow pure wurtzite InAsSb nanowires which are predicted to exhibit even stronger spin-orbit coupling than the zinc-blende structure.
Original language | English |
---|---|
Article number | 044202 |
Journal | Physical Review Materials |
Volume | 2 |
Issue number | 4 |
Number of pages | 8 |
ISSN | 2475-9953 |
DOIs | |
Publication status | Published - 2018 |