Engineering hybrid epitaxial InAsSb/Al nanowires for stronger topological protection

Joachim E. Sestoft, Thomas Kanne, Aske Nørskov Gejl, Merlin von Soosten, Jeremy S. Yodh, Daniel Sherman, Brian Tarasinski, Michael Wimmer, Erik Johnson, Mingtang Deng, Jesper Nygard, Thomas Sand Jespersen, Charles M. Marcus, Peter Krogstrup*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

351 Downloads (Pure)

Abstract

The combination of strong spin-orbit coupling, large g factors, and the coupling to a superconductor can be used to create a topologically protected state in a semiconductor nanowire. Here we report on growth and characterization of hybrid epitaxial InAsSb/Al nanowires, with varying composition and crystal structure. We find the strongest spin-orbit interaction at intermediate compositions in zinc-blende InAs1-xSbx nanowires, exceeding that of both InAs and InSb materials, confirming recent theoretical studies. We show that the epitaxial InAsSb/Al interface allows for a hard induced superconducting gap and 2e transport in Coulomb charging experiments, similarly to experiments on InAs/Al and InSb/Al materials, and find measurements consistent with topological phase transitions at low magnetic fields due to large effective g factors. Finally we present a method to grow pure wurtzite InAsSb nanowires which are predicted to exhibit even stronger spin-orbit coupling than the zinc-blende structure.
Original languageEnglish
Article number044202
JournalPhysical Review Materials
Volume2
Issue number4
Number of pages8
ISSN2475-9953
DOIs
Publication statusPublished - 2018

Cite this

Sestoft, J. E., Kanne, T., Gejl, A. N., von Soosten, M., Yodh, J. S., Sherman, D., Tarasinski, B., Wimmer, M., Johnson, E., Deng, M., Nygard, J., Jespersen, T. S., Marcus, C. M., & Krogstrup, P. (2018). Engineering hybrid epitaxial InAsSb/Al nanowires for stronger topological protection. Physical Review Materials, 2(4), [044202 ]. https://doi.org/10.1103/PhysRevMaterials.2.044202