Metabolic engineering is the science of rewiring the metabolism of cells to enhance production of native metabolites or to endow cells with the ability to produce new products. The potential applications of such efforts are wide ranging, including the generation of fuels, chemicals, foods, feeds, and pharmaceuticals. However, making cells into efficient factories is challenging because cells have evolved robust metabolic networks with hard-wired, tightly regulated lines of communication between molecular pathways that resist efforts to divert resources. Here, we will review the current status and challenges of metabolic engineering and will discuss how new technologies can enable metabolic engineering to be scaled up to the industrial level, either by cutting off the lines of control for endogenous metabolism or by infiltrating the system with disruptive, heterologous pathways that overcome cellular regulation.

General information
Publication status: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, Yeast Cell Factories, Synthetic Biology Tools for Yeast
Contributors: Nielsen, J., Keasling, J.
Number of pages: 13
Pages: 1185-1197
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: CELL
Volume: 164
Issue number: 6
ISSN (Print): 0092-8674
Ratings:
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 22.79 SJR 27.691 SNIP 6.05
Web of Science (2016): Impact factor 30.41
Web of Science (2016): Indexed yes
Original language: English
Keywords: Cell factories, Industrial biotechnology, Metabolic engineering, Metabolism, Regulation, Synthetic biology
Electronic versions:
Engineering_Cellular_Metabolism.pdf
DOIs:
10.1016/j.cell.2016.02.004
Source: FindIt
Source-ID: 2298634212
Research output: Contribution to journal › Review – Annual report year: 2016 › Research › peer-review