Engineering and systems level analysis of Saccharomyces cerevisiae for production of 3 hydroxypropionic acid via malonyl CoA reductase dependent pathway

In the future, oil- and gas-derived polymers may be replaced with bio-based polymers, produced from renewable feedstocks using engineered cell factories. Acrylic acid and acrylic esters with an estimated world annual production of approximately 6 million tons by 2017 can be derived from 3-hydroxypropionic acid (3HP), which can be produced by microbial fermentation. For an economically viable process 3HP must be produced at high titer, rate and yield and preferably at low pH to minimize downstream processing costs.

General information
Publication status: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, Research Groups, Yeast Metabolic Engineering, iLoop, Applied Metabolic Engineering, Yeast Cell Factories, RWTH Aachen University, Chalmers University of Technology
Number of pages: 13
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Microbial Cell Factories
Volume: 15
Issue number: 53
ISSN (Print): 1475-2859
Ratings:
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.92 SJR 1.481 SNIP 1.241
Web of Science (2016): Impact factor 3.681
Web of Science (2016): Indexed yes
Original language: English
Keywords: 3-Hydroxypropionic acid, Saccharomyces cerevisiae, Redox metabolism, Metabolic engineering
Electronic versions:

Bibliographical note
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Source: PublicationPreSubmission
Source-ID: 122774706
Research output: Contribution to journal › Journal article – Annual report year: 2016 › Research › peer-review