Energy-harvesting bio-electro-dehalogenation for sustainable wastewater treatment

Li-Zhi Huang, Yifeng Zhang*, Xin-Ming Hu, Hans Christian B. Hansen, Steen Uttrup Pedersen, Kim Daasbjerg

*Corresponding author for this work

    Research output: Contribution to journalJournal articleResearchpeer-review

    155 Downloads (Pure)

    Abstract

    The concept of an “energy-harvesting bio-electro-dehalogenation” process is demonstrated, where exoelectrogenic bacteria in an anodic chamber of a microbial fuel cell (MFC) are used to capture and exploit the electrical energy stored in the biodegradable substrate (acetate). The acetate was derived from full electrocatalytic dehalogenation of non-biodegradable halogenated organic compounds (haloacetic acids) in the cathodic chamber. Cobalt(II) meso-tetraphenylporphyrin serves the role as electrocatalyst in the MFC. Cyclic voltammetric analysis shows that full dehalogenation requires a cathodic potential of −1.1 V vs. Ag/AgCl which can be augmented by stacked MFCs powered by the dehalogenated products. Cyclic voltammetric analysis and ion chromatography measurement confirm that electrogenerated cobalt(I) meso-tetraphenylporphyrin is catalyzing the reduction of tri-, di-, and monochloroacetic acids in a sequential dehalogenation processes. The energy harvesting concept is also applicable to other bio-electrochemical processes for treatment of bio-refractory pollutants.
    Original languageEnglish
    JournalElectrochimica Acta
    Volume290
    Pages (from-to)38-45
    ISSN0013-4686
    DOIs
    Publication statusPublished - 2018

    Keywords

    • Bio-electro-dehalogenation
    • Sustainable wastewater treatment
    • Microbial fuel cell
    • Metal macrocycles catalyst

    Fingerprint

    Dive into the research topics of 'Energy-harvesting bio-electro-dehalogenation for sustainable wastewater treatment'. Together they form a unique fingerprint.

    Cite this