Energy-efficient integrated silicon optical phased array

Huaqing Qiu, Yong Liu, Xiansong Meng, Xiaowei Guan, Yunhong Ding, Hao Hu

Research output: Contribution to journalJournal articleResearchpeer-review

100 Downloads (Pure)

Abstract

An optical phased array (OPA) is a promising non-mechanical technique for beam steering in solid-state light detection and ranging systems. The performance of the OPA largely depends on the phase shifter, which affects power consumption, insertion loss, modulation speed, and footprint. However, for a thermo-optic phase shifter, achieving good performance in all aspects is challenging due to trade-offs among these aspects. In this work, we propose and demonstrate two types of energy-efficient optical phase shifters that overcome these trade-offs and achieve a well-balanced performance in all aspects. Additionally, the proposed round-spiral phase shifter is robust in fabrication and fully compatible with deep ultraviolet (DUV) processes, making it an ideal building block for large-scale photonic integrated circuits (PICs). Using the high-performance phase shifter, we propose a periodic OPA with low power consumption, whose maximum electric power consumption within the field of view is only 0.33 W. Moreover, we designed Gaussian power distribution in both the azimuthal (φ) and polar (θ) directions and experimentally achieved a large sidelobe suppression ratio of 15.1 and 25 dB, respectively. Graphical Abstract: [Figure not available: see fulltext.].
Original languageEnglish
Article number23
JournalFrontiers of Optoelectronics
Volume16
Number of pages24
ISSN2095-2759
DOIs
Publication statusPublished - 2023

Keywords

  • Integrated optics
  • Optical phase shifter
  • Optical phased array
  • Silicon photonics

Fingerprint

Dive into the research topics of 'Energy-efficient integrated silicon optical phased array'. Together they form a unique fingerprint.

Cite this