Energy and Exergy Performances of Air-Based vs. Water-Based Heating and Cooling Systems: A Case Study of a Single-Family House

Research output: Chapter in Book/Report/Conference proceedingConference abstract in proceedingsResearchpeer-review

674 Downloads (Pure)

Abstract

Different indoor terminal units can be used to heat and cool indoor spaces. These terminal units mostly rely on convection and radiation heat transfer mechanisms but their relative ratios can vary significantly for air-based and water-based systems with implications on whole system performance, in terms of energy and exergy. In addition to the energy and exergy input required at the heating and cooling plants, the energy use of auxiliary components (fans and pumps) also vary depending on the chosen terminal unit.

In order to study the energy and exergy performances of air-based and water-based systems, an air heating and cooling system, and a radiant floor heating and cooling system were chosen, respectively. A single-family house was used as a case study assuming that different space heating and cooling systems were used to condition the indoor space of this house. In addition to the thermal energy and exergy inputs to the system, energy and exergy inputs to the auxiliary components were also studied. Both heating and cooling cases were considered and three climatic zones were studied; Copenhagen (Denmark), Yokohama (Japan), and Ankara (Turkey).

The analysis showed that the water-based radiant heating and cooling system performed better than the air-based system both in terms of energy and exergy input to the heating/cooling plant. The relative benefits of the water-based system over the air-based system vary depending on the climatic zone. The air-based system also requires higher auxilliary energy input compared to the water-based system and this difference is mainly due to the required air-flow rates to address the heating and cooling demands, indicating a clear benefit for the water-based system over the air-based system.

The auxilliary energy and exergy input to different systems is an important parameter for the whole system performance and its effects become more pronounced and can be studied better in terms of exergy than energy. In order to fully benefit from the water-based systems, the auxiliary energy use should be minimized.
Original languageEnglish
Title of host publicationProceedings of the 2016 ASHRAE Annual Conference
Number of pages8
Publication date2016
Article numberST-16-C070
Publication statusPublished - 2016
Event2016 ASHRAE Annual Conference - St. Louis, MO, United States
Duration: 25 Jun 201629 Jun 2016

Conference

Conference2016 ASHRAE Annual Conference
CountryUnited States
CitySt. Louis, MO
Period25/06/201629/06/2016

Fingerprint Dive into the research topics of 'Energy and Exergy Performances of Air-Based vs. Water-Based Heating and Cooling Systems: A Case Study of a Single-Family House'. Together they form a unique fingerprint.

Cite this