TY - JOUR
T1 - Enantioconvergent synthesis by sequential asymmetric Horner-Wadsworth-Emmons and palladium-catalyzed allylic substitution reactions
AU - Pedersen, Torben Møller
AU - Hansen, E. Louise
AU - Kane, John
AU - Rein, Tobias
AU - Helquist, Paul
AU - Norrby, Per-Ola
AU - Tanner, David Ackland
PY - 2001
Y1 - 2001
N2 - A new method for enantioconvergent synthesis has been developed. The strategy relies on the combination of an asymmetric Horner-Wadsworth-Emmons (HWE) reaction and a palladium-catalyzed allylic substitution. Different $alpha@-oxygen-substituted, racemic aldehydes were initially transformed by asymmetric HWE reactions into mixtures of two major $alpha@,$beta@-unsaturated esters, possessing opposite configurations at their allylic stereocenters as well as opposite alkene geometry. Subsequently, these isomeric mixtures of alkenes could be subjected to palladium-catalyzed allylic substitution reactions with carbon, nitrogen, and oxygen nucleophiles. In this latter step, the respective (E) and (Z) alkene substrate isomers were observed to react with opposite stereospecificity: the (E) alkene reacted with retention and the (Z) alkene with inversion of stereochemistry with respect to both the allylic stereocenter and the alkene geometry. Thus, a single $gamma@-substituted ester was obtained as the overall product, in high isomeric purity. The method was applied to a synthesis of a subunit of the iejimalides, a group of cytotoxic macrolides.
AB - A new method for enantioconvergent synthesis has been developed. The strategy relies on the combination of an asymmetric Horner-Wadsworth-Emmons (HWE) reaction and a palladium-catalyzed allylic substitution. Different $alpha@-oxygen-substituted, racemic aldehydes were initially transformed by asymmetric HWE reactions into mixtures of two major $alpha@,$beta@-unsaturated esters, possessing opposite configurations at their allylic stereocenters as well as opposite alkene geometry. Subsequently, these isomeric mixtures of alkenes could be subjected to palladium-catalyzed allylic substitution reactions with carbon, nitrogen, and oxygen nucleophiles. In this latter step, the respective (E) and (Z) alkene substrate isomers were observed to react with opposite stereospecificity: the (E) alkene reacted with retention and the (Z) alkene with inversion of stereochemistry with respect to both the allylic stereocenter and the alkene geometry. Thus, a single $gamma@-substituted ester was obtained as the overall product, in high isomeric purity. The method was applied to a synthesis of a subunit of the iejimalides, a group of cytotoxic macrolides.
M3 - Journal article
SN - 0002-7863
VL - 123
SP - 9738
EP - 9742
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 40
ER -