TY - JOUR
T1 - Elucidating the molecular physiology of lantibiotic NAI-107 production in Microbispora ATCC-PTA-5024
AU - Gallo, Giuseppe
AU - Renzone, Giovanni
AU - Palazzotto, Emilia
AU - Monciardini, Paolo
AU - Arena, Simona
AU - Faddetta, Teresa
AU - Giardina, Anna
AU - Alduina, Rosa
AU - Weber, Tilmann
AU - Sangiorgi, Fabio
AU - Russo, Alessandro
AU - Spinelli, Giovanni
AU - Sosio, Margherita
AU - Scaloni, Andrea
AU - Puglia, Anna Maria
N1 - This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
PY - 2016
Y1 - 2016
N2 - The filamentous actinomycete Microbispora ATCC-PTA-5024 produces the lantibiotic NAI-107, which is an antibiotic peptide effective against multidrug-resistant Gram-positive bacteria. In actinomycetes, antibiotic production is often associated with a physiological differentiation program controlled by a complex regulatory and metabolic network that may be elucidated by the integration of genomic, proteomic and bioinformatic tools. Accordingly, an extensive evaluation of the proteomic changes associated with NAI-107 production was performed on Microbispora ATCC-PTA-5024 by combining two-dimensional difference in gel electrophoresis, mass spectrometry and gene ontology approaches. Microbispora ATCC-PTA-5024 cultivations in a complex medium were characterized by stages of biomass accumulation (A) followed by biomass yield decline (D). NAI-107 production started at 90 h (A stage), reached a maximum at 140 h (D stage) and decreased thereafter. To reveal patterns of differentially represented proteins associated with NAI-107 production onset and maintenance, differential proteomic analyses were carried-out on biomass samples collected: i) before (66 h) and during (90 h) NAI-107 production at A stage; ii) during three time-points (117, 140, and 162 h) at D stage characterized by different profiles of NAI-107 yield accumulation (117 and 140 h) and decrement (162 h). Regulatory, metabolic and unknown-function proteins, were identified and functionally clustered, revealing that nutritional signals, regulatory cascades and primary metabolism shift-down trigger the accumulation of protein components involved in nitrogen and phosphate metabolism, cell wall biosynthesis/maturation, lipid metabolism, osmotic stress response, multi-drug resistance, and NAI-107 transport. The stimulating role on physiological differentiation of a TetR-like regulator, originally identified in this study, was confirmed by the construction of an over-expressing strain. Finally, the possible role of cellular response to membrane stability alterations and of multi-drug resistance ABC transporters as additional self-resistance mechanisms toward the lantibiotic was confirmed by proteomic and confocal microscopy experiments on a Microbispora ATCC-PTA-5024 lantibiotic-null producer strain which was exposed to an externally-added amount of NAI-107 during growth. This study provides a net contribution to the elucidation of the regulatory, metabolic and molecular patterns controlling physiological differentiation in Microbispora ATCC-PTA-5024, supporting the relevance of proteomics in revealing protein players of antibiotic biosynthesis in actinomycetes.
AB - The filamentous actinomycete Microbispora ATCC-PTA-5024 produces the lantibiotic NAI-107, which is an antibiotic peptide effective against multidrug-resistant Gram-positive bacteria. In actinomycetes, antibiotic production is often associated with a physiological differentiation program controlled by a complex regulatory and metabolic network that may be elucidated by the integration of genomic, proteomic and bioinformatic tools. Accordingly, an extensive evaluation of the proteomic changes associated with NAI-107 production was performed on Microbispora ATCC-PTA-5024 by combining two-dimensional difference in gel electrophoresis, mass spectrometry and gene ontology approaches. Microbispora ATCC-PTA-5024 cultivations in a complex medium were characterized by stages of biomass accumulation (A) followed by biomass yield decline (D). NAI-107 production started at 90 h (A stage), reached a maximum at 140 h (D stage) and decreased thereafter. To reveal patterns of differentially represented proteins associated with NAI-107 production onset and maintenance, differential proteomic analyses were carried-out on biomass samples collected: i) before (66 h) and during (90 h) NAI-107 production at A stage; ii) during three time-points (117, 140, and 162 h) at D stage characterized by different profiles of NAI-107 yield accumulation (117 and 140 h) and decrement (162 h). Regulatory, metabolic and unknown-function proteins, were identified and functionally clustered, revealing that nutritional signals, regulatory cascades and primary metabolism shift-down trigger the accumulation of protein components involved in nitrogen and phosphate metabolism, cell wall biosynthesis/maturation, lipid metabolism, osmotic stress response, multi-drug resistance, and NAI-107 transport. The stimulating role on physiological differentiation of a TetR-like regulator, originally identified in this study, was confirmed by the construction of an over-expressing strain. Finally, the possible role of cellular response to membrane stability alterations and of multi-drug resistance ABC transporters as additional self-resistance mechanisms toward the lantibiotic was confirmed by proteomic and confocal microscopy experiments on a Microbispora ATCC-PTA-5024 lantibiotic-null producer strain which was exposed to an externally-added amount of NAI-107 during growth. This study provides a net contribution to the elucidation of the regulatory, metabolic and molecular patterns controlling physiological differentiation in Microbispora ATCC-PTA-5024, supporting the relevance of proteomics in revealing protein players of antibiotic biosynthesis in actinomycetes.
U2 - 10.1186/s12864-016-2369-z
DO - 10.1186/s12864-016-2369-z
M3 - Journal article
C2 - 26754974
SN - 1471-2164
VL - 17
JO - B M C Genomics
JF - B M C Genomics
IS - 42
ER -