Elucidating the ionic liquid distribution in monolithic SILP hydroformylation catalysts by magnetic resonance imaging

Jakob Maximilian Marinkovic, Stefan Benders, Eduardo José Garcia-Suarez, Alexander Weiß, Carsten Gundlach, Marco Haumann, Markus Küppers, Bernhard Blümich, Rasmus Fehrmann, Anders Riisager*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

154 Downloads (Pure)

Abstract

Monolithic silicon carbide supported ionic liquid-phase (SILP) Rh-catalysts have very recently been introduced for gas-phase hydroformylation as an important step toward industrial upscaling. This study investigates the monolithic catalyst system in combination with different impregnation procedures with non-invasive magnetic resonance imaging (MRI). The findings were supported by X-ray microtomography (micro-CT) data of the monolithic pore structure and a catalytic performance test of the catalyst system for 1-butene gas-phase hydroformylation. MRI confirmed a homogeneous impregnation of the liquid phase throughout the full cross-section of the cylindrical monoliths. Consistent impregnations from one side to the other of the monoliths were achieved with a stabilizer in the system that helped preventing inhomogeneous rim formation. External influences relevant for industrial application, such as long-term storage and temperature exposure, did not affect the homogeneous liquid-phase distribution of the catalyst. The work elucidates important parameters to improve liquid-phase catalyst impregnation to obtain efficient monolithic catalysts for industrial exploitation in gas-phase hydroformylation as well as other important industrial processes.

Original languageEnglish
JournalRSC Advances
Volume10
Issue number31
Pages (from-to)18487-18495
ISSN2046-2069
DOIs
Publication statusPublished - 2020

Fingerprint

Dive into the research topics of 'Elucidating the ionic liquid distribution in monolithic SILP hydroformylation catalysts by magnetic resonance imaging'. Together they form a unique fingerprint.

Cite this