Elemental analysis of ash residue from combustion of CCA treated wood waste before and after electrodialytic extraction

Research output: Contribution to journalJournal articleResearchpeer-review


Element distribution in a combined fly ash and bottom ash from combustion of copper chromate arsenate (CCA) treated wood waste was investigated by scanning electron microscopy (SEM/EDX) before and after electrodialytic extraction. The untreated ash contained various particles, including pieces of incompletely combusted wood rich in Cr and Ca, and irregular particles rich in Si, Al and K. Cr was also found incorporated in silica-based matrix particles. As was associated with Ca in porous (char) particles, indicating that Ca-arsenates had been formed during combustion. Cu was associated with Cr in the incompletely combusted wood pieces and was also found in almost pure form in a surface layer of some matrix particles – indicating surface condensation of volatile Cu species. In treated ash, Ca and As were no longer found together, indicating that Ca-arsenates had been dissolved due to the electrodialytic treatment. Instead particles rich in Ca and S were now found, indicating precipitation of Ca-sulphates due to addition of sulphuric acid in connection with the electrodialytic treatment. Cu and Cr were still found associated with incompletely combusted wood particles and incorporated in matrix particles. Chemical analyses of untreated and treated ash confirmed that most As, but only smaller amounts of Cu and Cr was removed due to the electrodialytic extraction. Overall metal contents in the original ash residue were: 1.4 g As, 2.76 g Cu and 2.48 g Cr, after electrodialytic extraction these amounts were reduced by 86% for As, 15% for Cu and 33% for Cr.
Original languageEnglish
Issue number1
Pages (from-to)110-116
Publication statusPublished - 2006

Fingerprint Dive into the research topics of 'Elemental analysis of ash residue from combustion of CCA treated wood waste before and after electrodialytic extraction'. Together they form a unique fingerprint.

Cite this