Electron microscopy study of the deactivation of nickel based catalysts for bio oil hydrodeoxygenation

Diego Gardini, Peter Mølgaard Mortensen, Hudson W. P. Carvalho, Christian Danvad Damsgaard, Jan-Dierk Grunwalst, Peter Arendt Jensen, Anker Degn Jensen, Jakob Birkedal Wagner

Research output: Contribution to journalConference abstract in journalResearchpeer-review

362 Downloads (Pure)


Hydrodeoxygenation (HDO) is proposed as an efficient way to remove oxygen in bio-oil, improving its quality as a more sustainable alternative to conventional fuels in terms of CO2 neutrality and relative short production cycle [1].
Ni and Ni-MoS2 nanoparticles supported on ZrO2 show potential as high-pressure (100 bar) catalysts for purification of bio-oil by HDO. However, the catalysts deactivate in presence of sulfur, chlorine and potassium species, which are all naturally occurring in real bio-oil.
The deactivation mechanisms of the Ni/ZrO2 have been investigated through scanning transmission electron microscopy (STEM), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Catalytic testing has been performed using guaiacol in 1-octanol acting as a model compound for bio-oil.
Addition of sulphur (0.3 vol% octanethiol) in the feed resulted in permanent deactivation of the catalyst by formation of a catalytically inactive Ni-S phase, as suggested by the very similar spatial distribution of nickel and sulphur signals in STEM-EDX elemental maps (Figure 1) and confirmed by XRD and X-ray absorption spectroscopy (XAS) techniques.
Deactivation by chlorine (0.3 vol% chlorooctane) co-feeding was found to be reversible, as the catalyst could regain close to its initial deoxygenation activity upon restoration of a clean feed. SEM-EDX investigations excluded the presence of chlorine species; however, XRD analysis revealed sintering of nickel nanoparticles (Figure 2).
Impregnating KCl and KNO3 on two different batches of catalysts decreased permanently their deoxygenation activity, suggesting the adsorption of potassium at low coordinated nickel sites [2]. The high mobility of potassium under the electron beam [3] prevented the spatial distribution study of this element through STEM-EDX. Moreover, nickel sintering was observed in the KCl poisoned sample and was ascribed once again to the formation of mobile Ni-Cl species upon reaction of HCl with surface oxides [4].
Furthermore, environmental transmission electron microscopy (ETEM) has been used in order to investigate the oxidation of Ni-MoS2/ZrO2 catalyst active phase as a function of different HDO reaction conditions and using methanol as a model molecule for bio-oil.
Original languageEnglish
JournalMicroscopy and Microanalysis
Issue numberSuppl. 3
Pages (from-to)458-459
Number of pages2
Publication statusPublished - 2014
EventScandem 2014 - Linköping, Sweden
Duration: 11 Jun 201413 Jun 2014
Conference number: 65


ConferenceScandem 2014
Internet address


  • Catalysis
  • Bio-oil

Cite this