Abstract
Ultralarge metal-oxide-semiconductor (MOS) devices with an active oxide area of 1 cm2 have been fabricated for use as electron emitters. The MOS structures consist of a Si substrate, a SiO2 tunnel barrier (~5 nm), a Ti wetting layer (3–10 Å), and a Au top layer (5–60 nm). Electron emission from the Au metal layer to vacuum is realized from these devices by applying bias voltages larger than the work function of the Au layer. The emission is characterized for Au layers with thicknesses ranging from 5 to 60 nm nominally. The emission efficiency changes from close to 10−6 to 10−10. The Ti wetting layer is varied from 3 to 10 Å which changes the emission efficiency by more than one order of magnitude. The apparent mean free path of ~5 eV electrons in Au is found to be 52 Å. Deposition of Cs on the Au film increased the electron emission efficiency to 4.3% at 4 V by lowering the work function. Electron emission under high pressures (up to 2 bars) of Ar was observed. ©2009 American Vacuum Society
Original language | English |
---|---|
Journal | Journal of Vacuum Science & Technology B |
Volume | 27 |
Issue number | 2 |
Pages (from-to) | 562-567 |
ISSN | 1071-1023 |
DOIs | |
Publication status | Published - 2009 |