Electrokinetic remediation of copper mine tailings: Implementing bipolar electrodes

Henrik K. Hansen, Adrián Rojo, Lisbeth M. Ottosen

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

Important process parameters to optimize in electrokinetic soil remediation are those influencing remediation time and power consumption since these directly affect the cost of a remediation action. This work shows how the electrokinetic remediation (EKR) process could be improved by implementing bipolar electrodes in the porous material. The bipolar electrodes in EKR meant two improvements: (1) a shorter migration pathway for the contaminant, and (2) an increased electrical conductivity in the remediation system. All together the remediation proceeded faster with lower electrical resistance than in similar experiments but without the bipolar electrodes. The new electrokinetic remediation design was tested on copper mine tailings with different applied electric fields, remediation times and pre-treatment. The results showed that the copper removal was increased from 8% (applying 20V for 8 days in sulphuric acidified tailings) without bipolar electrodes to 42% when bipolar electrodes were implemented. Furthermore, the results showed that in this system sulphuric acid addition prior to remediation was better than citric acid addition. In addition, applying a too strong electric field (even with bipolar electrodes) could cause a severe polarization (e.g. a high electrical resistance) in the remediation system.
Original languageEnglish
JournalElectrochimica Acta
Volume52
Issue number10
Pages (from-to)3355-3359
ISSN0013-4686
Publication statusPublished - 2007

Fingerprint Dive into the research topics of 'Electrokinetic remediation of copper mine tailings: Implementing bipolar electrodes'. Together they form a unique fingerprint.

Cite this