TY - JOUR
T1 - Electrodialytic treatment for metal removal from sewage sludge ash from fluidized bed combustion
AU - Pazos, Marta
AU - Kirkelund, Gunvor Marie
AU - Ottosen, Lisbeth M.
PY - 2010
Y1 - 2010
N2 - Sewage sludge contains several potentially hazardous compounds such as heavy metals, PCBs, PAHs, etc. However, elements with high agricultural value (P, K or Ca) are also present. During the last years, the fluidized bed sludge combustor (FBSC) is considered an effective and novel alternative to treat sewage sludge. By its use, the high amount of sludge is reduced to a small quantity of ash and thermal destruction of toxic organic constituents is obtained. Conversely, heavy metals are retained in the ash. In this work the possibility for electrodialytic metal removal for sewage sludge ash from FBSC was studied. A detailed characterization of the sewage sludge ash was done initially, determining that, with the exception of Cd, the other heavy metals (Cr, Cu, Pb, Ni and Zn) were under the limiting levels of Danish legislation for the use of sewage sludge as fertilizer. After 14 days of electrodialytic treatment, the Cd concentration was reduced to values below the limiting concentration. In all experiments the concentrations of other metals were under limiting values of the Danish legislation. It can be concluded that the electrodialytic treatment is an adequate alternative to reduce the Cd concentration in FBSC ash prior to use as fertilizer.
AB - Sewage sludge contains several potentially hazardous compounds such as heavy metals, PCBs, PAHs, etc. However, elements with high agricultural value (P, K or Ca) are also present. During the last years, the fluidized bed sludge combustor (FBSC) is considered an effective and novel alternative to treat sewage sludge. By its use, the high amount of sludge is reduced to a small quantity of ash and thermal destruction of toxic organic constituents is obtained. Conversely, heavy metals are retained in the ash. In this work the possibility for electrodialytic metal removal for sewage sludge ash from FBSC was studied. A detailed characterization of the sewage sludge ash was done initially, determining that, with the exception of Cd, the other heavy metals (Cr, Cu, Pb, Ni and Zn) were under the limiting levels of Danish legislation for the use of sewage sludge as fertilizer. After 14 days of electrodialytic treatment, the Cd concentration was reduced to values below the limiting concentration. In all experiments the concentrations of other metals were under limiting values of the Danish legislation. It can be concluded that the electrodialytic treatment is an adequate alternative to reduce the Cd concentration in FBSC ash prior to use as fertilizer.
U2 - 10.1016/j.jhazmat.2009.11.150
DO - 10.1016/j.jhazmat.2009.11.150
M3 - Journal article
C2 - 20034740
SN - 0304-3894
VL - 176
SP - 1073
EP - 1078
JO - Journal of Hazardous Materials
JF - Journal of Hazardous Materials
IS - 1-3
ER -