Electrodialytic removal of Cd from biomass combustion fly ash suspensions - DTU Orbit (19/10/2019)

Electrodialytic removal of Cd from biomass combustion fly ash suspensions

Due to relatively high concentrations of Cd, biomass combustion fly ashes often fail to meet Danish legislative requirements for recycling as fertilizer. In this study, the potential of using electrodialytic remediation for removal of Cd from four different biomass combustion fly ashes was investigated with the aim of enabling reuse of the ashes. The ashes originated from combustion of straw (two ashes), wood chips, and co-firing of wood pellets and fuel oil, respectively. A series of laboratory scale electrodialytic remediation experiments were conducted with each ash. The initial Cd concentration in the ashes varied between 8.8 mg Cd/kg (co-firing ash) and 64. mg Cd/kg (pre-washed straw ash), and pH varied from 3.7 (co-firing ash) to 13.3 (wood ash). In spite of such large variations between the ashes, the electrodialytic method showed to be sufficiently robust to treat the ashes so the final Cd concentration was below 2.0 mg Cd/kg DM in at least one experiment done with each ash. This was obtained within 2 weeks of remediation and at liquid to solid (L/S) ratios of L/S 16 for the pre-washed straw ash and L/S 8 for the straw, co-firing and wood ash. © 2013 Elsevier B.V.

General information

Publication status: Published
Organisations: Department of Civil Engineering, Section for Geotechnics and Geology, Section for Construction Materials, Department of Chemical and Biochemical Engineering, CHEC Research Centre
Contributors: Kirkelund, G. M., Ottosen, L. M., Damoe, A. J.
Pages: 212-219
Publication date: 2013
Peer-reviewed: Yes

Publication information

Journal: Journal of Hazardous Materials
Volume: 250-251
ISSN (Print): 0304-3894
Ratings:
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 5.09 SJR 1.822 SNIP 2.419
Web of Science (2013): Impact factor 4.331
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
Original language: English
Keywords: Biomass, Cadmium, Experiments, Fly ash, Fuel oils, Remediation, Wood products, Pollution
Electronic versions:
1_s2.0_S0304389413001106_main.pdf
DOIs:
10.1016/j.jhazmat.2013.02.004
Source: dtu
Source ID: n:oai:DTIC-ART:compendex/383266338::27210
Research output: Contribution to journal › Journal article – Annual report year: 2013 › Research › peer-review