Electrode Kinetics in High Temperature Fuel Cells

Lasse Bay

Research output: Book/ReportReportResearchpeer-review


The O_2 reduction on Pt electrode with an yttria stabilized zirconia (YSZ) electrolyte is examined with potential step, voltammetry and impedance measurements. Inductive hysteresis are observed in all cases, indicating an activation-deactivation process for the electrode reaction. The same is found when the electrolyte is Gd doped ceria. The activation is generated by current passage. The time constant for the hysteresis is large considering the high operating temperatures, 800- 1000^oC. For the activation process potential steps give two time constants 10^2s and 10^3s for an anodic current, 10^3s and 10^5s for a cathodic current. For the deactivation is the time constant about 10^4s. The origin for the hysteresis is not clear, but expansion of the three phase boundary (TPB) or change of the catalytic properties due to surface segregation are suggested.The hysteresis phenomenon is also treated by modelling. The phenomenological model proposed can explain the principal behaviour of the inductive hysteresis. The activation process has first order dependence of the current density and the deactivation first order with respect to the activation.AFM pictures of the electrode-electrolyte interface show dynamics of the YSZ surface and formation of a bank of YSZ along the TPB. These changes are induced by passage of current. The origin of the dynamics behaviour may be a localised temperature increase or it might be driven by segregation. The dynamics of the YSZ surface seems to be irreversible to annealing at 1000^oC.A separated part of the project was performed at National Institute of Materials and Chemical Research, Tsukuba, Japan. Here YSZ, Pr doped YSZ and Y doped SrCeO_3 were tested as electrolytes in a one chamber fuel cell. Electrochemical measurements and SIMS analysis of tracer exchange experiments shows that the solubility of hydrogen in YSZ increases by doping and might affect the performance of the one chamber fuel cell.
Original languageEnglish
Number of pages118
Publication statusPublished - 1998

Cite this