TY - JOUR
T1 - Electrochemical investigation of nickel pattern electrodes in H2/H2O and CO/CO2 atmospheres
AU - Ehn, A.
AU - Høgh, Jens Valdemar Thorvald
AU - Graczyk, M.
AU - Norrman, Kion
AU - Montelius, L.
AU - Linne, M.
AU - Mogensen, Mogens Bjerg
PY - 2010
Y1 - 2010
N2 - In this study, nickel pattern electrodes were electrochemically investigated in a three-electrode setup, operating both with H2 / H2 O and CO/ CO2 atmospheres. Heating introduced structural differences in the nickel layer among the pattern electrodes, which appear to affect the electrode performance. Both dense and porous nickel pattern electrodes were formed by heating. Holes appeared in the nickel layer of the porous pattern electrodes, where the open cavity triple phase boundaries exhibited different limiting processes than open triple phase boundary electrodes of the dense electrode. As the temperature was raised in the experiment, the electrodes stabilized, with a degraded behavior that seemed to be strongly coupled to the structural changes in the electrode. It was possible to compare literature results with high temperature impedance measurements in H2 / H2 O presented here, while new results at lower temperatures in H2 / H2 O are also presented. Impedance spectroscopy measurements were performed, and the gas dependence of the polarization resistance was observed as the mixture ratios and temperatures were varied in both atmospheres. A positive relation between the polarization resistance and the partial pressure of CO was determined for the dense nickel pattern electrode, which agrees with previous results using nickel point electrodes. © 2010 The Electrochemical Society.
AB - In this study, nickel pattern electrodes were electrochemically investigated in a three-electrode setup, operating both with H2 / H2 O and CO/ CO2 atmospheres. Heating introduced structural differences in the nickel layer among the pattern electrodes, which appear to affect the electrode performance. Both dense and porous nickel pattern electrodes were formed by heating. Holes appeared in the nickel layer of the porous pattern electrodes, where the open cavity triple phase boundaries exhibited different limiting processes than open triple phase boundary electrodes of the dense electrode. As the temperature was raised in the experiment, the electrodes stabilized, with a degraded behavior that seemed to be strongly coupled to the structural changes in the electrode. It was possible to compare literature results with high temperature impedance measurements in H2 / H2 O presented here, while new results at lower temperatures in H2 / H2 O are also presented. Impedance spectroscopy measurements were performed, and the gas dependence of the polarization resistance was observed as the mixture ratios and temperatures were varied in both atmospheres. A positive relation between the polarization resistance and the partial pressure of CO was determined for the dense nickel pattern electrode, which agrees with previous results using nickel point electrodes. © 2010 The Electrochemical Society.
KW - Fuel Cells and Hydrogen
KW - Electrolysis
KW - Elektrolyse
KW - Brændselsceller og brint
U2 - 10.1149/1.3484091
DO - 10.1149/1.3484091
M3 - Journal article
SN - 0013-4651
VL - 157
SP - B1588-B1596
JO - Journal of The Electrochemical Society
JF - Journal of The Electrochemical Society
IS - 11
ER -