Abstract
The concept of combining electrical impedance spectroscopy (EIS) with environmental transmission electron microscopy (ETEM) is demonstrated by testing a specially designed micro gadolinia-doped ceria (CGO) sample in reactive gasses (O2 and H2/H2O), at elevated temperatures (room temperature—800 °C) and with applied electrical potentials. The EIS-TEM method provides structural and compositional information with direct correlation to the electrochemical performance. It is demonstrated that reliable EIS measurements can be achieved in the TEM for a sample with nanoscale dimensions. Specifically, the ionic and electronic conductivity, the surface exchange resistivity, and the volume-specific chemical capacitance are in good agreement with results from more standardized electrochemical tests on macroscopic samples. CGO is chosen as a test material due to its relevance for solid oxide electrochemical reactions where its electrochemical performance depends on temperature and gas environment. As expected, the results show increased conductivity and lower surface exchange resistance in H2/H2O gas mixtures where the oxygen partial pressure is low compared to experiments in pure O2. The developed EIS-TEM platform is an important tool in promoting the understanding of nanoscale processes for green energy technologies, e.g., solid oxide electrolysis/fuel cells, batteries, thermoelectric devices, etc.
Original language | English |
---|---|
Article number | 2201713 |
Journal | Small Methods |
Volume | 7 |
Issue number | 7 |
Number of pages | 10 |
ISSN | 2366-9608 |
DOIs | |
Publication status | Published - 2023 |
Bibliographical note
This project was received funding from the European Research Council under the European Union's Horizon 2020 research and innovation programme (grant agreement No 850850).Keywords
- CGO
- EIS
- ETEM
- Operando
- SOEC
- SOFC