Soluble salts cause severe decay of historic Portuguese tiles. Treatment options for removal of the salts to stop the decay are few. The present paper deals with development of a method for electrochemical desalination, where an electric DC field is applied to the tiles. Laboratory experiments were conducted with single 18th century tiles from Palácio Centeno, Lisbon, Portugal. Large parts of the glaze and parts of the biscuit were lost from salt decay. The major aim of the investigation was to see if the method could offer sufficient salt removal in the biscuit and in the interface between biscuit and glaze, where salt crystals were clearly identified by SEM-EDX before desalination. The concentrations of chloride and especially nitrate were very high in the tiles (around 280 mmol Cl⁻/kg and 450 mmol NO₃⁻/kg respectively). Both anions were successfully removed to below 6 mmol/kg during the electrochemical treatment. The removal rate was similar for the two anions so the chloride concentration reached the lowest concentration level first. At this point the electric resistance increased, but the removal of nitrate continued unaffected till similar low concentration. The sulfate concentration was initially very low, but nevertheless, sulfate removal started at the point where chloride and nitrate concentrations were very low in the tiles. Investigating the interface between biscuit and glaze after the treatment showed no signs of crystallized salts, so also in this important point, the desalination was successful. Based on the obtained results an important step is taken towards development of an electrochemical technique for desalination of tile panels.